5. (a) $f(x)$ approaches 2 as x approaches 1 from the left, so $\lim f(x)=2$.
(b) $f(x)$ approaches 3 as x approaches 1 from the right, so $\lim f(x)=3$.

$$
x \rightarrow 1^{+}
$$

(c) $\lim f(x)$ does not exist because the limits in part (a) and part (b) are not equal.
$x \rightarrow 1$
(d) $f(x)$ approaches 4 as x approaches 5 from the left and from the right, so $\lim f(x)=4$.
(e) $f(5)$ is not defined, so it doesn't exist.
7. (a) $\lim g(t)=-1$

$$
t \rightarrow 0^{-}
$$

(b) $\lim g(t)=-2$
$t \rightarrow 0^{+}$
(c) $\lim g(t)$ does not exist because the limits in part (a) and part (b) are not equal.
$t \rightarrow 0$
(d) $\lim g(t)=2$
$t \rightarrow 2^{-}$
(e) $\lim g(t)=0$
$t \rightarrow 2^{+}$
(f) $\lim g(t)$ does not exist because the limits in part (d) and part (e) are not equal.
$t \rightarrow 2$
(g) $g(2)=1$
(h) $\lim _{t \rightarrow 4} g(t)=3$
9. (a) $\lim f(x)=-\infty$
(b) $\lim f(x)=\infty$
$x \rightarrow-3$
(c) $\lim _{x \rightarrow 0} f(x)=\infty$
(d) $\lim f(x)=-\infty$ $x \rightarrow 6$
(e) $\lim f(x)=\infty$ $x \rightarrow 6^{+}$
(f) The equations of the vertical asymptotes are $x=-7, x=-3, x=0$, and $x=6$.
11.

(a) $\lim f(x)=1$
$x \rightarrow 0$
(b) $\lim f(x)=0$
$x \rightarrow 0^{+}$
(c) $\lim f(x)$ does not exist because the limits in part (a) and part (b) are not equal. $x \rightarrow 0$
13. $\lim f(x)=4, \lim f(x)=2$,
$x \rightarrow 3^{+} \quad x \rightarrow 3^{-}$
$\lim _{x \rightarrow-2} f(x)=2, f(3)=3, f(-2)=1$
$x \rightarrow-2$

17. For $f(x)=\frac{\sin x}{x+\tan x}$:

x	$f(x)$
± 1	0.329033
± 0.5	0.458209
± 0.2	0.493331
± 0.1	0.498333
± 0.05	0.499583
± 0.01	0.499983

It appears that $\lim _{x \rightarrow 0} \frac{\sin x}{x+\tan x}=0.5=\frac{1}{2}$.
19. For $f(x)=\frac{\sqrt{x+4}-2}{x}$:

x	$f(x)$
1	0.236068
0.5	0.242641
0.1	0.248457
0.05	0.249224
0.01	0.249844

x	$f(x)$
-1	0.267949
-0.5	0.258343
-0.1	0.251582
-0.05	0.250786
-0.01	0.250156

It appears that $\lim _{x \rightarrow 0} \frac{\sqrt{x+4}-2}{x}=0.25=\frac{1}{4}$.

