- 5. (a) f(x) approaches 2 as x approaches 1 from the left, so $\lim f(x)=2$.
- (b) f(x) approaches 3 as x approaches 1 from the right, so $\lim_{x \to 1^+} f(x) = 3$.
- (c) $\lim_{x \to 1} f(x)$ does not exist because the limits in part (a) and part (b) are not equal.
- (d) f(x) approaches 4 as x approaches 5 from the left and from the right, so $\lim_{x \to 5} f(x) = 4$.
- (e) f(5) is not defined, so it doesn't exist.
- 7. (a) $\lim_{t \to 0^{-}} g(t) = -1$
- **(b)** $\lim_{t \to 0^+} g(t) = -2$
- (c) $\lim_{t\to 0} g(t)$ does not exist because the limits in part (a) and part (b) are not equal.
- (d) $\lim_{t \to 2^{-}} g(t) = 2$
- (e) $\lim_{t \to 2^+} g(t) = 0$
- (f) $\lim_{t \to 2} g(t)$ does not exist because the limits in part (d) and part (e) are not equal.
- (g) g(2)=1
- (h) $\lim_{t \to 4} g(t) = 3$
- 9. (a) $\lim_{x \to -7} f(x) = -\infty$
- **(b)** $\lim_{x \to -3} f(x) = \infty$
- (c) $\lim_{x \to 0} f(x) = \infty$
- (d) $\lim_{x \to 6} f(x) = -\infty$
- (e) $\lim_{x \to 6^+} f(x) = \infty$
- (f) The equations of the vertical asymptotes are x=-7, x=-3, x=0, and x=6.

- (a) $\lim_{x \to 0} f(x) = 1$ $x \rightarrow 0^{-}$
- **(b)** $\lim_{x \to 0} f(x) = 0$ $x \rightarrow 0^+$
- (c) $\lim f(x)$ does not exist because the limits in part (a) and part (b) are not equal. $x \rightarrow 0$

It appears that $\lim_{x \to 0} \frac{\sin x}{x + \tan x} = 0.5 = \frac{1}{2}$.

19. F	for $f(x) = \frac{\sqrt{x}}{\sqrt{x}}$	$\frac{+4}{x}$:	
x	f(x)			
1	0.236068			
0.5	0.242641			
0.1	0.248457			
0.05	0.249224			
0.01	0.249844			
x	f(x)			
-1	0.267949			
-0.5	0.258343			
-0.1	0.251582			
-0.04	50.250786			
-0.01	10.250156			
It app	pears that $\lim_{x \to x} x \to x$	$\frac{\sqrt{x+x}}{\sqrt{x+x}}$	$\frac{-4}{x} = 0$	$0.25 = \frac{1}{4}$.