3. $f(x)=10+25 x-x^{3}$
(a) $[-4,4]$ by $[-4,4]$

(b) $[-10,10]$ by $[-10,10]$

(c) $[-20,20]$ by $[-100,100]$

(d) $[-100,100]$ by $[-200,200]$

The most appropriate graph is produced in viewing rectangle (c) because the maximum and minimum points are fairly easy to see and estimate.
7. $f(x)=0.01 x^{3}-x^{2}+5$. Graphing f in a standard viewing rectangle, $[-10,10]$ by $[-10,10]$, shows us what appears to be a parabola. But since this is a cubic polynomial, we know that a larger viewing rectangle will reveal a minimum point as well as the maximum point. After some trial and error, we choose the viewing rectangle $[-50,150]$ by $[-2000,2000]$.

23. We see that the graphs of $f(x)=x^{2}$ and $g(x)=\sin x$ intersect twice. One solution is $x=0$. The other solution of $f=g$ is the x-coordinate of the point of intersection in the first quadrant. Using an intersect feature or zooming in, we find this value to be approximately 0.88 . Alternatively, we could find that value by finding the positive zero of $h(x)=x^{2}-\sin x$.

Note : After producing the graph on a TI- 83 Plus, we can find the approximate value 0.88 by using the following keystrokes:
2nd CALC 5 ENTER ENTER 1 ENTER . The " 1 " is just a guess for 0.88 .
27.

We see from the graphs of $y=|\sin x-x|$ and $y=0.1$ that there are two solutions to the equation $|\sin x-x|=0.1: x \approx-0.85$ and $x \approx 0.85$. The condition $|\sin x-x|<0.1$ holds for any x lying between these two values.
31. $f(x)=x^{4}+c x^{2}+x$. If $c<0$, there are three humps: two minimum points and a maximum point. These humps get flatter as c increases, until at $c=0$ two of the humps disappear and there is only one minimum point. This single hump then moves to the right and approaches the origin as c increases.

