1. (a) If the graph of f is shifted 3 units upward, its equation becomes $y=f(x)+3$.
(b) If the graph of f is shifted 3 units downward, its equation becomes $y=f(x)-3$.
(c) If the graph of f is shifted 3 units to the right, its equation becomes $y=f(x-3)$.
(d) If the graph of f is shifted 3 units to the left, its equation becomes $y=f(x+3)$.
(e) If the graph of f is reflected about the x-axis, its equation becomes $y=-f(x)$.
(f) If the graph of f is reflected about the y-axis, its equation becomes $y=f(-x)$.
(\mathbf{g}) If the graph of f is stretched vertically by a factor of 3 , its equation becomes $y=3 f(x)$.
(h) If the graph of f is shrunk vertically by a factor of 3 , its equation becomes $y=\frac{1}{3} f(x)$.
2. (a) (graph 3) The graph of f is shifted 4 units to the right and has equation $y=f(x-4)$.
(b) (graph 1) The graph of f is shifted 3 units upward and has equation $y=f(x)+3$.
(c) (graph 4) The graph of f is shrunk vertically by a factor of 3 and has equation $y=\frac{1}{3} f(x)$.
(d) (graph 5) The graph of f is shifted 4 units to the left and reflected about the x-axis. Its equation is $y=-f(x+4)$.
(e) (graph 2) The graph of f is shifted 6 units to the left and stretched vertically by a factor of 2 . Its equation is $y=2 f(x+6)$.
3. (a) To graph $y=f(2 x)$ we shrink the graph of f horizontally by a factor of 2 .

The point $(4,-1)$ on the graph of f corresponds to the point $\left(\frac{1}{2} \cdot 4,-1\right)=(2,-1)$.
(b) To graph $y=f\left(\frac{1}{2} x\right)$ we stretch the graph of f horizontally by a factor of 2 .

The point $(4,-1)$ on the graph of f corresponds to the point $(2 \cdot 4,-1)=(8,-1)$.
(c) To graph $y=f(-x)$ we reflect the graph of f about the y-axis.

The point $(4,-1)$ on the graph of f corresponds to the point $(-1 \cdot 4,-1)=(-4,-1)$.
(d) To graph $y=-f(-x)$ we reflect the graph of f about the y-axis, then about the x-axis.

The point $(4,-1)$ on the graph of f corresponds to the point $(-1 \cdot 4,-1 \cdot-1)=(-4,1)$.
13. $y=1+2 \cos x$: Start with the graph of $y=\cos x$, stretch vertically by a factor of 2 , and then shift 1 unit upward.

27. (a) To obtain $y=f(|x|)$, the portion of the graph of $y=f(x)$ to the right of the y-axis is reflected about the y-axis.
(b) $y=\sin |x|$

(c) $y=\sqrt{|x|}$

37. $f(x)=\sin x, D=\mathbb{R} ; g(x)=1-\sqrt{x}, D=[0, \infty)$.
$(f \circ g)(x)=f(g(x))=f(1-\sqrt{x})=\sin (1-\sqrt{x}), D=[0, \infty]$.
$(g \circ f)(x)=g(f(x))=g(\sin x)=1-\sqrt{\sin x}$. for $\sqrt{\sin x}$ to be defined, we must have $\sin x \geq 0 \Leftrightarrow$
$x \in[0, \pi] \cup[2 \pi, 3 \pi] \cup[-2 \pi,-\pi] \cup[4 \pi, 5 \pi] \cup[-4 \pi,-3 \pi] \cup \ldots$, so
$D=\{x \mid x \in[2 n \pi, \pi+2 n \pi]$, where n is an integer $\}$.
$(f \circ f)(x)=f(f(x))=f(\sin x)=\sin (\sin x), D=\mathbb{R}$.
$(g \circ g)(x)=g(g(x))=g(1-\sqrt{x})=1-\sqrt{1-\sqrt{x}}$,
$D=\{x \geq 0 \mid 1-\sqrt{x} \geq 0\}=\{x \geq 0 \mid 1 \geq \sqrt{x}\}=\{x \geq 0 \mid \sqrt{x} \leq 1\}=[0,1]$.
39. $f(x)=x+\frac{1}{x}, D=\{x \mid x \neq 0\} ; g(x)=\frac{x+1}{x+2}, D=\{x \mid x \neq-2\}$.

$$
\begin{aligned}
f \circ g(x) & =f(g(x))=f\left(\frac{x+1}{x+2}\right)=\frac{x+1}{x+2}+\frac{1}{\frac{x+1}{x+2}}=\frac{x+1}{x+2}+\frac{x+2}{x+1} \\
& =\frac{(x+1)(x+1)+(x+2)(x+2)}{(x+2)(x+1)}=\frac{\left(x^{2}+2 x+1\right)+\left(x^{2}+4 x+4\right)}{(x+2)(x+1)}=\frac{2 x^{2}+6 x+5}{(x+2)(x+1)}
\end{aligned}
$$

Since $g(x)$ is not defined for $x=-2$ and $f(g(x))$ is not defined for $x=-2$ and $x=-1$, the domain of $(f \circ g)(x)$ is $D=\{x \mid x \neq-2,-1\}$.

$$
(g \circ f)(x)=g(f(x))=g\left(x+\frac{1}{x}\right)=\frac{\left(x+\frac{1}{x}\right)+1}{\left(x+\frac{1}{x}\right)+2}=\frac{\frac{x^{2}+1+x}{x}}{\frac{x^{2}+1+2 x}{x}}=\frac{x^{2}+x+1}{x^{2}+2 x+1}=\frac{x^{2}+x+1}{(x+1)^{2}} .
$$

Since $f(x)$ is not defined for $x=0$ and $g(f(x))$ is not defined for $x=-1$, the domain of $(g \circ f)(x)$ is $D=\{x \mid x \neq-1,0\}$.

$$
\begin{aligned}
(f \circ f)(x) & =f(f(x))=f\left(x+\frac{1}{x}\right)=\left(x+\frac{1}{x}\right)+\frac{1}{x+\frac{1}{x}}=x+\frac{1}{x}+\frac{1}{\frac{x^{2}+1}{x}}=x+\frac{1}{x}+\frac{x}{x^{2}+1} \\
& =\frac{x(x)\left(x^{2}+1\right)+1\left(x^{2}+1\right)+x(x)}{x\left(x^{2}+1\right)}=\frac{x^{4}+x^{2}+x^{2}+1+x^{2}}{x\left(x^{2}+1\right)} \\
& =\frac{x^{4}+3 x^{2}+1}{x\left(x^{2}+1\right)}, D=\{x \mid x \neq 0\} .
\end{aligned}
$$

$(g \circ g)(x)=g(g(x))=g\left(\frac{x+1}{x+2}\right)=\frac{\frac{x+1}{x+2}+1}{\frac{x+1}{x+2}+2}=\frac{\frac{x+1+1(x+2)}{x+2}}{\frac{x+1+2(x+2)}{x+2}}=\frac{x+1+x+2}{x+1+2 x+4}=\frac{2 x+3}{3 x+5}$. Since $g(x)$ is not defined for $x=-2$ and $g(g(x))$ is not defined for $x=-\frac{5}{3}$, the domain of $(g \circ g)(x)$ is $D=\left\{x \mid x \neq-2,-\frac{5}{3}\right\}$.
53. Let $h(x)=\sqrt{x}, g(x)=\sec x$, and $f(x)=x^{4}$. Then $(f \circ g \circ h)(x)=(\sec \sqrt{x})^{4}=\sec ^{4}(\sqrt{x})=H(x)$.
54. (a) $f(g(1))=f(6)=5$
(b) $g(f(1))=g(3)=2$
(c) $f(f(1))=f(3)=4$
(d) $g(g(1))=g(6)=3$
(e) $(g \circ f)(3)=g(f(3))=g(4)=1$
(f) $(f \circ g)(6)=f(g(6))=f(3)=4$
55. (a) $g(2)=5$, because the point $(2,5)$ is on the graph of g. Thus, $f(g(2))=f(5)=4$, because the point $(5,4)$ is on the graph of f.
(b) $g(f(0))=g(0)=3$
(c) $(f \circ g)(0)=f(g(0))=f(3)=0$
(d) $(g \circ f)(6)=g(f(6))=g(6)$. This value is not defined, because there is no point on the graph of g that has x-coordinate 6 .
(e) $(g \circ g)(-2)=g(g(-2))=g(1)=4$
(f) $(f \circ f)(4)=f(f(4))=f(2)=-2$
57. (a) Using the relationship distance $=$ rate \cdot time with the radius r as the distance, we have $r(t)=60 t$.
(b) $A=\pi r^{2} \Rightarrow(A \circ r)(t)=A(r(t))=\pi(60 t)^{2}=3600 \pi t^{2}$. This formula gives us the extent of the rippled area (in cm^{2}) at any time t.

