5. (a) An equation for the family of linear functions with slope 2 is $y=f(x)=2 x+b$, where b is the $y-$ intercept.

(b) $f(2)=1$ means that the point $(2,1)$ is on the graph of f. We can use the point-slope form of a line to obtain an equation for the family of linear functions through the point $(2,1) \cdot y-1=m(x-2)$, which is equivalent to $y=m x+(1-2 m)$ in slope-intercept form.

(c) To belong to both families, an equation must have slope $m=2$, so the equation in part (b), $y=m x+(1-2 m)$, becomes $y=2 x-3$. It is the only function that belongs to both families.
6. All members of the family of linear functions $f(x)=c-x$ have graphs that are lines with slope -1 . The y-intercept is c.

7. (a) Using N in place of x and T in place of y, we find the slope to be
$\frac{T_{2}-T_{1}}{N_{2}-N_{1}}=\frac{80-70}{173-113}=\frac{10}{60}=\frac{1}{6}$. So a linear equation is $T-80=\frac{1}{6}(N-173) \Leftrightarrow T-80=\frac{1}{6} N-\frac{173}{6} \Leftrightarrow$ $T=\frac{1}{6} N+\frac{307}{6}\left[\frac{307}{6}=51.1 \overline{6}\right]$.
(b) The slope of $\frac{1}{6}$ means that the temperature in Fahrenheit degrees increases one-sixth as rapidly as the number of cricket chirps per minute. Said differently, each increase of 6 cricket chirps per minute corresponds to an increase of 1
${ }^{\circ} \mathrm{F}$.
(c) When $N=150$, the temperature is given approximately by $T=\frac{1}{6}(150)+\frac{307}{6}=76.1 \overline{6}^{\circ} \mathrm{F} \approx 76^{\circ} \mathrm{F}$.
