1. (a) The point $(-1,-2)$ is on the graph of f, so $f(-1)=-2$.
(b) When $x=2, y$ is about 2.8 , so $f(2) \approx 2.8$.
(c) $f(x)=2$ is equivalent to $y=2$. When $y=2$, we have $x=-3$ and $x=1$.
(d) Reasonable estimates for x when $y=0$ are $x=-2.5$ and $x=0.3$.
(e) The domain of f consists of all x-values on the graph of f. For this function, the domain is $-3 \leq x \leq 3$, or $[-3,3]$. The range of f consists of all y-values on the graph of f. For this function, the range is $-2 \leq y \leq 3$, or $[-2,3]$.
(f) As x increases from -1 to $3, y$ increases from -2 to 3 . Thus, f is increasing on the interval $[-1,3]$.
2. $f(x)=3 x^{2}-x+2$.
$f(2)=3(2)^{2}-2+2=12-2+2=12$.
$f(-2)=3(-2)^{2}-(-2)+2=12+2+2=16$.
$f(a)=3 a^{2}-a+2$.
$f(-a)=3(-a)^{2}-(-a)+2=3 a^{2}+a+2$.
$f(a+1)=3(a+1)^{2}-(a+1)+2=3\left(a^{2}+2 a+1\right)-a-1+2=3 a^{2}+6 a+3-a+1=3 a^{2}+5 a+4$.
$2 f(a)=2 \cdot f(a)=2\left(3 a^{2}-a+2\right)=6 a^{2}-2 a+4$.
$f(2 a)=3(2 a)^{2}-(2 a)+2=3\left(4 a^{2}\right)-2 a+2=12 a^{2}-2 a+2$.
$f\left(a^{2}\right)=3\left(a^{2}\right)^{2}-\left(a^{2}\right)+2=3\left(a^{4}\right)-a^{2}+2=3 a^{4}-a^{2}+2$.
$[f(a)]^{2}=\left[3 a^{2}-a+2\right]^{2}=\left(3 a^{2}-a+2\right)\left(3 a^{2}-a+2\right)$
$=9 a^{4}-3 a^{3}+6 a^{2}-3 a^{3}+a^{2}-2 a+6 a^{2}-2 a+4=9 a^{4}-6 a^{3}+13 a^{2}-4 a+4$.
$f(a+h)=3(a+h)^{2}-(a+h)+2=3\left(a^{2}+2 a h+h^{2}\right)-a-h+2=3 a^{2}+6 a h+3 h^{2}-a-h+2$.
3. $f(x)=x-x^{2}$, so $f(2+h)=2+h-(2+h)^{2}=2+h-\left(4+4 h+h^{2}\right)=2+h-4-4 h-h^{2}=-\left(h^{2}+3 h+2\right)$,
$f(x+h)=x+h-(x+h)^{2}=x+h-\left(x^{2}+2 x h+h^{2}\right)=x+h-x^{2}-2 x h-h^{2}$, and
$\frac{f(x+h)-f(x)}{h}=\frac{x+h-x^{2}-2 x h-h^{2}-x+x^{2}}{h}=\frac{h-2 x h-h^{2}}{h}=\frac{h(1-2 x-h)}{h}=1-2 x-h$.
4. $f(x)=x /(3 x-1)$ is defined for all x except when $0=3 x-1 \Leftrightarrow x=\frac{1}{3}$, so the domain is

$$
\left\{x \in R \left\lvert\, x \neq \frac{1}{3}\right.\right\}=\left(-\infty, \frac{1}{3}\right) \cup\left(\frac{1}{3}, \infty\right) .
$$

27. $h(x)=1 / \sqrt[4]{x^{2}-5 x}$ is defined when $x^{2}-5 x>0 \Leftrightarrow x(x-5)>0$. Note that $x^{2}-5 x \neq 0$ since that would result in division by zero. The expression $x(x-5)$ is positive if $x<0$ or $x>5$. (See Appendix A for methods for solving inequalities.) Thus, the domain is $(-\infty, 0) \cup(5, \infty)$.
28. $f(x)= \begin{cases}\mathrm{x}+2 & \text { if } \mathrm{x} \leq-1 \\ \mathrm{x}^{2} & \text { if } \mathrm{x}>-1\end{cases}$

Note that for $x=-1$, both $x+2$ and x^{2} are equal to 1 . Domain is \mathbb{R}.

45. For $-1 \leq x \leq 2$, the graph is the line with slope 1 and y - intercept 1 , that is, the line $y=x+1$. For $2<x \leq 4$, the graph is the line with slope $-\frac{3}{2}$ and x intercept 4 , so $y-0=-\frac{3}{2}(x-4)=-\frac{3}{2} x+6$. So the function is $f(x)= \begin{cases}x+1 & \text { if }-1 \leq x \leq 2 \\ -\frac{3}{2} x+6 & \text { if } 2<x \leq 4\end{cases}$
49. Let the length of a side of the equilateral triangle be x. Then by the Pythagorean Theorem, the height y of the triangle satisfies $y^{2}+\left(\frac{1}{2} x\right)^{2}=x^{2}$, so that $y^{2}=x^{2}-\frac{1}{4} x^{2}=\frac{3}{4} x^{2}$ and $y=\frac{\sqrt{3}}{2} x$. Using the formula for the area A of a triangle, $A=\frac{1}{2}$ (base) (height), we obtain $A(x)=\frac{1}{2}(x)\left(\frac{\sqrt{3}}{2} x\right)=\frac{\sqrt{3}}{4} x^{2}$, with domain $x>0$.
53. The height of the box is x and the length and width are $L=20-2 x, W=12-2 x$. Then $V=L W x$ and so $V(x)=(20-2 x)(12-2 x)(x)=4(10-x)(6-x)(x)=4 x\left(60-16 x+x^{2}\right)=4 x^{3}-64 x^{2}+240 x$.
The sides L, W, and x must be positive. Thus, $L>0 \Leftrightarrow 20-2 x>0 \Leftrightarrow x<10 ; W>0 \Leftrightarrow 12-2 x>0 \Leftrightarrow x<6$; and $x>0$. Combining these restrictions gives us the domain $0<x<6$.

