

Matrices

00

• A matrix is a rectangular array of elements:

$$\begin{bmatrix} 1 & -2 & 4 \\ 5 & 1 & 3 \\ -1 & 4 & 7 \end{bmatrix} \qquad \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

- A matrix that has dimensions $m \times n$ has m rows and n columns.
- A square matrix has the same number of rows and columns $(n \times n)$.

Example

001

Represent the system by an augmented matrix and state the dimensions of the matrix:

$$\begin{cases}
3x - 5y = 4 \\
x + y = 2
\end{cases}$$

2.
$$\begin{cases} 2x + y + 3z = 4 \\ -3x - y - 4z = 5 \\ x + y + 2z = 0 \end{cases}$$

Row-Echelon Form

00

- A matrix is in row-echelon form if it has ones down the main diagonal and zeros beneath:
- A matrix is in reduced rowechelon form if it has ones down the main diagonal and zeros above and below:

$$\begin{bmatrix} 1 & 2 & -5 & 7 \\ 0 & 1 & -3 & 2 \\ 0 & 0 & 1 & -4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Examples

Write the equations that correspond to the augmented matrix, then solve the system:

$$1. \begin{bmatrix} 1 & 4 & -2 \\ 0 & 1 & 3 \end{bmatrix}$$

1.
$$\begin{bmatrix} 1 & 4 & -2 \\ 0 & 1 & 3 \end{bmatrix}$$
2.
$$\begin{bmatrix} 1 & -1 & 2 & 8 \\ 0 & 1 & -4 & 2 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$
3.
$$\begin{bmatrix} 1 & 0 & -4 & \frac{3}{4} \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & -3 \end{bmatrix}$$

Gaussian Elimination

00

MATRIX ROW TRANSFORMATIONS

For any augmented matrix representing a system of linear equations, the following row transformations result in an equivalent system of linear equations.

- 1. Any two rows may be interchanged.
- **2.** The elements of any row may be multiplied by a nonzero constant.
- **3.** Any row may be changed by adding to (or subtracting from) its elements a multiple of the corresponding elements of another row.

ockswold 2006 p 783

From Precalculus with Modeling and Visualization 3rd ed. by Rockswold, 2006, p.783

Examples

Solve the system:

1.
$$\begin{cases} x+3y-2z=3\\ -x-2y+z=-2\\ 2x-7y+z=1 \end{cases}$$
 2.
$$\begin{cases} 4x-y-z=0\\ 4x-2y=0\\ 2x+z=1 \end{cases}$$

2.
$$\begin{cases} 4x - y - z = 0 \\ 4x - 2y = 0 \\ 2x + z = 1 \end{cases}$$

3.
$$\begin{cases} 2x - y - z = 0 \\ x - y - z = -2 \\ 3x - 2y - 2z = -2 \end{cases}$$

3.
$$\begin{cases} 2x - y - z = 0 \\ x - y - z = -2 \\ 3x - 2y - 2z = -2 \end{cases}$$
 4.
$$\begin{cases} 2x - 4y - z = 2 \\ x + y - 3z = 10 \\ -x - 7y + 8z = 2 \end{cases}$$

Example

Use technology to find the solution. Approximate values to the nearest thousandth.

$$\begin{cases} 12x - 4y - 7z = 8 \\ -8x - 6y + 9z = 7 \\ 34x + 6y - 2z = 5 \end{cases}$$