

Properties of Logarithms

If x, y, and b > 0, then

$$\log_b(xy) = \log_b x + \log_b y$$

$$\log_b \frac{x}{y} = \log_b x - \log_b y$$

$$\log_b x^k = k \log_b x$$

Examples

001

Expand the expression. If possible, write your answer without exponents.

1.
$$\ln \frac{xy}{z}$$

$$\log_2 \frac{32}{xy^2}$$

3.
$$\log \sqrt{\frac{xy^2}{z}}$$

4.
$$\log\left(\frac{2x-1}{5xy}\right)$$

Examples

00

Write the expression as a logarithm of a single expression.

1.
$$\log_6 45 + 3\log_6 b$$

2.
$$\log_3 x + \frac{1}{2} \log_3 (x+3) - \frac{1}{3} \log_3 (x-4)$$

Change of Base Formula

Let x, $a \ne 1$, and $b \ne 1$ be positive real numbers. Then

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Example: Evaluate $\log_6 0.77$