

Form

An exponential function is a function of the form

$$
f(x)=b^{x}
$$

where $b>0$ and $b \neq 1$.

\qquad
\qquad
\qquad
\qquad
\qquad

Properties of the graph

- Domain is $(-\infty, \infty)$
- Range is $(0, \infty)$
- Horizontal Asymptote is $y=0$
- y-intercept is $(0,1)$
\qquad
\qquad
\qquad
\qquad
\qquad

Example

- Graph $y=2^{x}$
- Graph $y=2^{-x}$
- Graph $y=2^{x}+1$
- Graph $y=2^{x+1}$

\qquad
\qquad
\qquad
\qquad
\qquad

Compound Interest

The amount accumulated in an account bearing interest compounded n times annually
is

$$
A(t)=P\left(1+\frac{r}{n}\right)^{n t}
$$

where $P=$ principal invested

$$
r=\text { interest rate (as a decimal) }
$$

$t=$ time in years
\qquad
\qquad
\qquad
\qquad
\qquad

Example

Suppose $\$ 5000$ is invested at an interest rate of 8%. Find the amount in the account after ten years if the interest is compounded
a. annually
b. semiannually
c. daily

Definition of e

e is an irrational number (like π)

$$
e \approx 2.71828182845
$$

The natural exponential function is

$$
f(x)=e^{x}
$$

Continuously Compounded Interest
The amount accumulated in an account bearing interest compounded continuously is

$$
A(t)=P e^{r t}
$$

where $P=$ principal invested
$r=$ interest rate (as a decimal)
$t=$ time in years
\qquad

Example

$\$ 5000$ is invested at an interest rate of 8%, compounded continuously. How much is in the account after 10 years?

Exponential Growth and Decay

Exponential growth of a population is given by the formula \qquad
where

$$
P(t)=P_{0} e^{k t}
$$

$P_{0}=$ initial size of the population
$k=$ relative rate of growth (positive) or decay (negative)
$t=$ time

Example

The population of Phoenix, Arizona, in 2000 was 1.3 million and growing continuously at a 3% rate.
a. Assuming this trend continues, estimate the

\qquad
\qquad
\qquad
\qquad population of Phoenix in 2010.
b. Determine graphically or numerically when this population might reach 2 million.

From Precalculus with Modeling and Visualization $3^{\text {rd }}$ ed. by Rockswold, 2006, p. 416 problem 98.

