
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Number of Zeros of Polynomials

Fundamental Theorem of Algebra
The polynomial $f(x)$ of degree $n \geq 1$ has at least one complex zero.

Number of Zeros Theorem
A polynomial of degree n has at most n distinct zeros.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example

The graph provided is a degree 5 polynomial.

1. Identify whether the leading coefficient is positive or negative.
2. How many real and how many imaginary zeros does the polynomial have?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Complex Zeros of Polynomials

Conjugate Zeros Theorem

If a polynomial $f(x)$ has only real coefficients and if $a+b i$ is a zero of $f(x)$, then the conjugate $a-b i$ is also a zero of $f(x)$.

Examples

- Find the equation of a a degree 3 polynomial with leading coefficient $-3 / 4$ and zeros - $3 i$ and $2 / 5$.
- Given that 2 i is one zero, find all the zeros of $f(x)=x^{4}+2 x^{3}+8 x^{2}+8 x+16$
- Find all the zeros of $f(x)=x^{3}+2 x^{2}+16 x+32$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

