

FACTOR THEOREM
A polynomial $f(x)$ has a factor $x - k$ if and only if $f(k) = 0$.
10
Example: Use the factor theorem to decide if $x - \frac{1}{2}$ is a factor of $f(x) = 2x^4 - 11x^3 + 9x^2 + 14x$
45
From Precalculus with Modeling and Visualization 3rd ed. by Rockswold, 2006, p.279

Y	
	COMPLETE FACTORED FORM
	Suppose a polynomial
001	$f(x) = a_n x^n + \dots + a_2 x^2 + a_1 x + a_0$
	has n real zeros $c_1, c_2, c_3, \dots, c_n$, where distinct zeros are listed as many times as their multiplicities. Then $f(x)$ can be written in complete factored form as
	$f(x) = a_n(x - c_1)(x - c_2)(x - c_3) \cdots (x - c_n).$
	Example: Write the complete factored form of
	$f(x) = 2x^3 + x^2 - 11x - 10$
	given that -2 is a zero.
	45
Fı	rom Precalculus with Modeling and Visualization 3rd ed. by Rockswold, 2006, p.280

Multiplicity of Zeros

If a polynomial has a zero of odd multiplicity, the graph crosses the *x*-axis at that point. If a polynomial has a zero of even multiplicity, the graph "bounces off" the *x*-axis at that point.

45

Examples

For each polynomial,

- a. Find the *x* and *y*-intercepts.
- b. Determine the multiplicity of each zero.
- c. Sketch a graph by hand.

1.
$$f(x) = -3(x-1)^3$$

2.
$$f(x) = x^2(x+2)(x-2)$$