
\qquad
\qquad

Graphs of Polynomials

Degree, x-intercepts, and turning points
The graph of a polynomial function of degree $n \geq 1$ has at most $n x$-intercepts and at most $n-1$ turning points.

End Behavior

- A polynomial of odd degree with a positive leading coefficient has negative y-values for large negative x-values, and positive y values for large positive x-values.
- A polynomial of even degree with a positive leading coefficient has positive y-values for both large positive and large negative x values.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Example

Graph $f(x)=\left\{\begin{array}{lr}x^{2}, & -2 \leq x<0 \\ x+1, & 0 \leq x \leq 2\end{array}\right.$
Is this function continuous on its domain?

Solve $f(x)=0$.

