

Definition A function, f, is a rule that assigns to each element, x, in a set, A, exactly one element, f(x), in a set, B. A function, f, is a rule that assigns to each element, f(x), in a set, f(x), in a set, f(x), in a set, f(x), in a set, f(x), f(x)

Notation y is the same thing as f(x). This is the output of the function. x is the input to the function. Example: f(1) is the notation for the y-value that corresponds to the x-value of 1.

Example

For the given function, evaluate at each value

- **a.** $f(x) = 2x^2 5x + 3$
- **b.** $h(z) = \sqrt{z}$
- **i.** *f*(0)
- **i.** *h*(0)
- **ii.** *f* (−4)
- **ii.** h(49) **iii.** *h*(−9)
- **c.** g(y) = 3y + 2
 - **i.** g(-1)
 - ii. g(y+h)

Domain & Range

- The domain consists of all values of the independent variable, x, allowed in the function.
- The range consists of all values of the dependent variable, f(x) or y, that result as the independent variable takes on values across the domain.

Rules for finding the domain of an algebraic function

- If the function is a fraction, set the denominator equal to zero and solve for x. These are the values to EXCLUDE from the domain.
- If the function is an EVEN radical, set what's under the radical greater than or equal to zero. Solve for *x* to obtain the domain.
- The above rules can be combined.
- If neither of the first two rules applies, the domain is all real numbers.

Example

Find the domain

a.
$$f(x) = 2x - 5, -3 \le x \le 7$$

b.
$$g(t) = \sqrt{t}$$

c.
$$h(x) = \frac{1}{2x - 5}$$

d.
$$f(p) = \frac{2p+3}{\sqrt{p}}$$

Example Find the domain and range

Vertical Line Test

If no vertical line intersects a graph in more than one place, then the graph represents a function.

