









### ELLIPSES

Graph the ellipse. Label the foci and the endpoints of each axis.

1.  $x^2 + 4y^2 = 400$ 

2.  $5x^2 + 4y^2 = 20$ 

| An ellipse with center $(h, k)$ , and                                                                                              | d either a horizontal or vertical major axis, satisfies on                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| of the following equations, whi<br>$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ $\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$ | $\begin{array}{l} \operatorname{re} a > b > 0 \ \operatorname{und} c^+ = a^ b^- \ \operatorname{will} c \geq 0.\\ \operatorname{Major} ads - \operatorname{uotzentati} foci: (h \pm c, k)\\ \operatorname{Vertices:} (h \pm a, k)\\ \operatorname{Major} ads - \operatorname{wettkal} foci: (h, k \pm c)\\ \operatorname{Vertices:} (h, k \pm a) \end{array}$ |
| Shifted Ellipses                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                               |

## ELLIPSES

- 1. Write the equation  $9x^2 36x + 16y^2 64y 44 = 0$  in the standard form for an ellipse. Graph the ellipse and identify the center and the vertices.
- 2. Find the equation of an ellipse with vertices (– 1,  $\pm 3)$  and foci (–1,  $\pm 1).$
- 3. Write the equation  $x^2 + 4y^2 8y + 4x 8 = 0$  in the standard form for an ellipse. Graph the ellipse and identify the center and the vertices. 4. Find the equation of an ellipse with vertices  $(\pm 6, 0)$  and foci  $(\pm 4, 0)$ .

# <u>CIRCLES</u>

A circle is a type of an ellipse. The standard form for a circle is with radius r and center (h, k) is

$$(x-h)^2 + (y-k)^2 = r^2$$

#### CIRCLES

- Find the standard equation of a circle with center (-1, -3) passing through the point (3, 0). Graph the circle.
- 2. Find the standard equation of a circle whose diameter has endpoints (4, 9) and (-2, 1).
- 3. Identify the center and radius of the circle  $x^2+y^2-12x-10y+52=0,$  then sketch its graph.



From Precalculus with Modeling and Visualization 3rd ed. by Rockswold, 2006, p.871





## HYPERBOLAS

Graph the hyperbola, including the asymptotes. Give the coordinates of the foci.

1.  $49y^2 - 25x^2 = 1225$ 

2.  $4x^2 - 4y^2 = 100$ 



#### HYPERBOLAS

- 1. Write the equation  $4x^2 + 16x 9y^2 + 18y = 29$  in the standard form for a hyperbola. Graph the hyperbola and identify the center and the vertices.
- 2. Find the equation of a hyperbola with vertices (2 $\pm$ 1, 1) and foci (2 $\pm$ 3, 1).
- 3. Write the equation  $8(x-4)^2-3(y-3)^2=24$  in the standard form for a hyperbola. Graph the hyperbola and identify the center and the vertices.
- 4. Find the equation of a hyperbola with vertices (-4±2 $\sqrt{5}$ , 1) and asymptotes  $y = \frac{1}{2}x + 3$  and  $y = -\frac{1}{2}x 1$





Graph the parabola. Label the vertex, focus, and directrix.

1.  $y = -\frac{1}{8}x^{2}$ 2.  $3x = \frac{1}{2}y^{2}$ 

| $(x-n)^2 = 4p(y-k)$ | Vertical axis; vertex: $(h, k)$<br>p > 0; opens upwani; $p < 0$ ; opens downwani                                                                                                                   |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(y-k)^2 = 4p(x-h)$ | Focus: $(h, k + p)$ ; directric: $y = k - p$<br>Horizontal axis; vertex: $(h, k)$<br>$p \ge 0$ ; opens to the right; $p \le 0$ ; opens to the left<br>Focus: $(h + p, k)$ ; directric: $x = h - p$ |
|                     |                                                                                                                                                                                                    |
|                     |                                                                                                                                                                                                    |
|                     |                                                                                                                                                                                                    |
| Shifted Parabolas   |                                                                                                                                                                                                    |

## PARABOLAS

- ). Write the equation  $y^2 + 8x 8 = 4x$  in the standard form for a parabola. Graph the parabola and label the vertex, focus, and directrix.
- 2. Find the equation of a parabola with Focus (2, 1) and directrix x = -1.
- 3. Write the equation  $x^2 14x 24y + 1 = 0$  in the standard form for a parabola. Graph the parabola and label the vertex, focus, and directrix.
- 4. Find the equation of a parabola with Focus (0, 2) and directrix y = -2.



