
\qquad
\qquad
\qquad
\qquad
\qquad

SEQUENCE	
A sequence is an ordered list of numbers, called terms.	
Examples:	$a_{1}, a_{2}, a_{3}, \ldots$
	$1,2,3,4,5, \ldots$
$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots$	
$1,-1,1,-1,1, \ldots$	
	$3,1,4,1,5,9,2,6,5,4, \ldots$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad

GENERAL TERM

Find the general term of the sequence

$$
\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

NOTATION

We can use the general term to represent the sequence.
Example: $\quad a_{n}=\frac{1}{n} \quad$ is the general term of the sequence

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots
$$

FINDING TERMS OF A SEQUENCE

1. Find the first five terms of the recursively defined sequence

$$
a_{n}=\frac{a_{n-1}}{2}, \quad a_{1}=-8
$$

2. Find the first five terms of the sequence

$$
a_{n}=\frac{2^{n}}{n^{2}+3}
$$

FACTORIAL

$$
n!=n(n-1)(n-2) \cdots(3)(2)(1)
$$

Calculate:

1. 3 !
2. 5 !
3. $\frac{7!}{5!}$
4. $\frac{3!9!}{4!2!}$

ARITHMETIC SEQUENCE

INFINITE ARITHMETIC SEQUENCE
An infinite arithmetie sequence is a linear function whose domain is the set of natural An infinite
numbers.

$$
n \text {th TERM OF AN ARITHMETIC SEQUENCE }
$$

In an arithmetic sequence with first term a_{1} and common difference d, the nth term, a_{n}, is given by

$$
a_{n}=a_{1}+(n-1) d .
$$

ARITHMETIC SEQUENCES

1. Is $2,4,6,8, \ldots$ arithmetic?
2. $5.1,5.5,5.9,6.3,6.7, \ldots$ is an arithmetic sequence. Write out the next three terms and find the general term. \qquad

PARTIAL SUM OF ARITHMETIC SEQUENCE

The nth Partial Sum of an Arithmetic Sequence
Given an arithmetic sequence with first term a_{j}, the nth partial sum is given by

$$
s_{n}=n\left(\frac{a_{1}+a_{n}}{2}\right)
$$

In words: The sum of an arithmetic sequence is the number of terms times the average of the first and last term.
$1+2+3+4+5++99+100$

PARTIAL SUM OF ARITHMETIC SEQUENCE

1. Find the sum of the first 75 positive, odd integers:
$\sum_{k=1}(2 k-1)$
2. Find the sum:

$$
\sum_{n=1}^{29}(4 n-1)
$$

\qquad

EXAMPLES

1. Determine the common ratio, the fifth term, and the $n^{\text {th }}$ term of the geometric

$$
7, \frac{14}{3}, \frac{28}{9}, \frac{56}{27}, \ldots
$$

2. Classify the sequence $5,2,-2,-6,-11$ as arithmetic, geometric, or neither.
3. Find the $10^{\text {th }}$ term of the sequence $3,-6,12,-24, \ldots$

PARTIAL SUM OF GEOMETRIC SEQUENCE

The nth Partial Sum of a Geometric Sequence
Given a geometric sequence with first term a_{1} and common ratio r, the nth partial sum (the sum of the first n terms) is

$$
S_{n}=\frac{a_{1}-a_{1} r^{n}}{1-r}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}, r \nRightarrow 1
$$

In words: The sum of a geometric sequence is the difference of the first and $(n+1)$ st term, divided by 1 minus the common ratio.

PARTIAL SUM OF GEOMETRIC SEQUENCE

Lat $s=a+\sigma F+a z^{2}+a z^{3}+\cdots+a^{n-1}$.
lhen $F s=a r+a F^{s}+\pi r^{3}+G F^{4}+\cdots+\pi r^{n}$
Thens $s-f s=a-\mu F^{n}$
Then $s(1-F)=a\left(1-F^{n}\right)$, so $s=\frac{1-\tau^{*}}{1-F} \quad$ (if $\left.F \neq 1\right)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

PARTIAL SUM OF A GEOMETRIC SEQUENCE

1. Find the sum:

$$
\sum_{i=1}^{9} 3^{i}
$$

2. Find the sum:

$$
\sum_{j=1}^{7} 3\left(\frac{1}{5}\right)^{j-1}
$$

3. If $a_{2}=-5$ and $a_{5}=\frac{1}{25}$, find S_{5}.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

GEOMETRIC SERIES

Infinite Geometric Series

Given a geometric sequence with first term a_{1} and $|r|<1$, the sum of the related infinite series is given by
\qquad
\qquad
\qquad
\qquad
If $|y|>1$, no finite sum exists.

5/19/2016

GEOMETRIC SERIES

Determine whether the geometric series has a finite sum. If so, find it.

1. $3+6+12+24+$
2. $9+3+1+\cdots$
3. $4+8+16+32+$
4. $-49+(-7)+\left(-\frac{1}{7}\right)+$.
5. $\sum_{1}^{\infty} \frac{3}{4}\left(\frac{2}{3}\right)^{k}$
6. $\sum_{k=1}^{\infty} 12\left(\frac{4}{3}\right)^{k}$

