

SEQUENCE		
A sequence is an order	ed list of numbers, called terms.	
Examples:	a_1, a_2, a_3, \dots	
	$1, 2, 3, 4, 5, \dots$ $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots$	
	1,-1,1,-1,1, 3,1,4,1,5,9,2,6,5,4,	

GENERAL TERM

When the sequence has a definite pattern, e can use a general term to describe the sequence:

1,2,3,4,5,...,n,... $1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{5},...,\frac{1}{n},...$ $1,-1,1,-1,1,...,(-1)^{n+1},...$

GENERAL TERM

Find the general term of the sequence

 $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots$

NOTATION We can use the general term to represent the sequence. Example: $a_n = \frac{1}{n}$ is the general term of the sequence $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots$

FINDING TERMS OF A SEQUENCE

1. Find the first five terms of the recursively defined sequence

$$a_n = \frac{a_{n-1}}{2}, \quad a_1 = -8$$

2. Find the first five terms of the sequence

 $a_n = \frac{2^n}{n^2 + 3}$

ARITHMETIC SEQUENCES

- 1. Is 2, 4, 6, 8, ... arithmetic?
- 2. 5.1, 5.5, 5.9, 6.3, 6.7, \ldots is an arithmetic sequence. Write out the next three terms and find the general term.
- 3. Find the 24th term of the sequence 0.1, 0.4, 0.7, 1, \ldots

GEOMETRIC SEQUENCE

INFINITE GEOMETRIC SEQUENCE An **infinite geometric sequence** is a function defined by $f(n) = cr^{n-1}$, where c and r are nonzero constants. The domain of f is the set of natural numbers.

From Precalculus with Modeling and Visualization 3rd ed. by Rockswold, 2006, p.896

EXAMPLES

 Determine the common ratio, the fifth term, and the nth term of the geometric sequence
 14, 29, 57

$$7, \frac{14}{3}, \frac{28}{9}, \frac{56}{27}, \dots$$

2. Classify the sequence 5, 2, -2, -6, -11 as arithmetic, geometric, or neither.

3. Find the 10^{th} term of the sequence $3, -6, 12, -24, \dots$

PARTIAL SUM OF GEOMETRIC SEQUENCE

The nth Partial Sum of a Geometric Sequence Given a geometric sequence with first term a_i and common ratio r, the nth partial sum (the sum of the first n terms) is $S_n = \frac{a_1 - a_1 r^n}{1 - r} = \frac{a_1(1 - r^n)}{1 - r}, r \neq 1$ In words: The sum of a geometric sequence is the difference of the first and (n + 1)st term, divided by 1 minus the common ratio.

Let
$$s = a + ar + ar^2 + ar^3 + \dots + ar^{n-1}$$
.
Then $rs = ar + ar^2 + ar^3 + ar^4 + \dots + ar^n$
Then $s - rs = a - ar^n$
Then $s(1 - r) = a(1 - r^n)$, so $s = a\frac{1 - r^n}{1 - r}$ (if $r \neq 1$).

GEOMETRIC SERIES

```
Determine whether the geometric series has a finite sum. If so, find it.

1. 3 + 6 + 12 + 24 + \cdots

2. 9 + 3 + 1 + \cdots

3. 4 + 8 + 16 + 32 + \cdots

4. -49 + (-7) + (-\frac{1}{7}) + \cdots

5. \sum_{k=1}^{\infty} \frac{3}{4} (\frac{2}{3})^k

6. \sum_{k=1}^{\infty} 12(\frac{4}{3})^k
```