

SOLVING SYSTEMS OF TWO EQUATIONS BY SUBSTITUTION:

- 1. Solve one of the equations for one of the variables in terms of the other.
- 2. Substitute this expression into the 2nd equation, which will yield an equation in one variable.
- 3. Solve the new equation.
- 4. Use the result of step 1 to find the other variable.

SOLVING SYSTEMS

Solve the system of linear equations:
1.
$$\begin{cases}
4x - 5y = 7 \\
2x - 5 = y
\end{cases}$$
2.
$$\begin{cases}
2x - y = 6 \\
\frac{3}{4}x - 1 = y
\end{cases}$$

1.
$$\begin{cases} 4x - 5y = 7\\ 2x - 5 = y \end{cases}$$

Not every system of equations has a unique solution. There are three possibilities:

- 1. The graphs may be the same line. We say this is a dependent system.
- 2. The graphs may be parallel but distinct lines. We say this is an inconsistent system.
- 3. The graphs may intersect in one and only one point. The system is said to be consistent and independent.

SOLVING A SYSTEM OF TWO EQUATIONS BY ELIMINATION

- 1. Choose one of the variables to eliminate. Multiply each equation by a suitable factor so that the coefficients of that variable are opposite.
- 2. Add the two new equations termwise.
- 3. Solve the resulting equation for the remaining variable.
- 4. Substitute the value found in step 3 into either of the original equations and solve for the other variable.

This is also called the method of linear combinations.

SOLVING A SYSTEM BY ELIMINATION

Solve the system of linear equations:
1.
$$\begin{cases} 4x + 3y = 8\\ -2x + 6y = 1 \end{cases}$$
2.
$$\begin{cases} -\frac{1}{3}x + \frac{1}{6}y = -1\\ 2x - y = 6 \end{cases}$$
3.
$$\begin{cases} 5x - 2y = 7\\ 10x - 4y = 6 \end{cases}$$

SOLVING A SYSTEM

A jeweler is commissioned to create a piece of artwork that will weigh 14 oz and consist of 75% gold. She has on hand two alloys that are 60% and 80% gold, respectively. How much of each should she use?

SOLVING A SYSTEM

An airplane flying due south from St. Louis, Missouri, to Baton Rouge, Louisiana, uses a strong, steady tailwind to complete the trip in only 2.5 hr. On the return trip, the same wind slows the flight and it takes 3 hr to get back. If the flight distance between these cities is 912 km, what is the cruising speed of the airplane (speed with no wind)? How fast is the wind blowing?

SOLVING A SYSTEM OF 3 EQUATIONS & 3 UNKNOWNS

- 1. Clear each equation of fractions and put it in standard form.
- 2. Choose two of the equations & eliminate one of the variables by forming a linear combination.
- 3. Choose a different pair of equations & eliminate the same variable.
- Form a 2 x 2 system with the equations found in steps 2 & 3. Eliminate one of the variables from this 2 x 2 system using a linear combination.
- 5. Use back-substitution to solve.

SOLVING A SYSTEM

Solve the system: $\int -x - 5y + 2z = 2$ $x + y + 2z = 2$	$\begin{cases} x-2y+z=1\\ x+y+2z=2 \end{cases}$
$\begin{array}{c} x + y + 2z = 2 \\ 3x + y - 4z = -10 \end{array}$	$\begin{bmatrix} x + y + z \\ 2x + 3y + z = 6 \end{bmatrix}$
3. $\begin{cases} 2x - y + 2z = 6\\ -x + y + z = 0\\ -x - 3z = -6 \end{cases}$	4. $\begin{cases} 2x + y + 3z = 4 \\ -3x - y - 4z = 5 \\ x + y + 2z = 0 \end{cases}$

SOLVING A SYSTEM

Solve the system: $\int 2x + y - 2z = -7$ $\begin{cases} x + y + z = -1 \end{cases}$ 1. -2y-z=-3

SOLVING A SYSTEM

A small business borrowed \$225,000 from three different lenders to expand their product line. The interest rates were 5%, 6%, and 7%. Find how much was borrowed at each rate if the annual interest came to \$13,000 and twice as much was borrowed at the 5% rate than was borrowed at the 7% rate.

PARTIAL FRACTION DECOMPOSITION

Decompose the expression into partial fractions:

- 1. $\frac{4x+11}{x^2+7x+10}$
- 2
- 2. $\frac{1}{(x+5)(x^2+7x+10)}$

3. $\frac{3x+11}{x^3-3x^2+x-3}$

PARTIAL FRACTION DECOMPOSITION

Write out the partial fraction template (DO NOT SOLVE!):

- 1. $\frac{5x-7}{3x^2+11x-4}$ 2. $\frac{2x-1}{(x+3)^3(x^2+8)}$
- 3. $\frac{5x}{x^3 x^2 + 9x}$

PROCEDURE FOR SOLVING INEQUALITIES IN TWO VARIABLES:

- 1. If possible, solve for y. Graph the curve described by the equation.
- 2. If the form is $y \le mx + b$ shade below the line
- 3. If the form is $y \ge mx + b$ shade above the line
- 4. Otherwise, use a test point to determine where to shade.
- 5. Use a dotted line for a strict inequality!

SOLVING INEQUALITIES

Graph the solution set to the inequality:

1. y > 2x 2. $2x + 3y \le 6$

SOLVING A SYSTEM OF INEQUALITIES

Solve the system:

1.

 $\begin{cases} 2x + y \ge 4 \\ x - y < 2 \end{cases} 2 x + y > 5 \\ x - 2y < -7 \end{cases}$

SOLVING A SYSTEM OF INEQUALITIES

As part of their retirement planning, James and Lily decide to invest up to 330,000 in two separate investment vehicles. The first is a bond issue paying 9% and the second is a money market certificate paying 5%. A financial adviser suggests they invest at least \$10,000 in the certificate and not more than \$15,000 in bonds. What various amounts can be invested in each?

MATRICES

A matrix is a rectangular array of elements:

[1	-2	4	a_{11}	a_{12}	<i>a</i> ₁₃
5	1	3	<i>a</i> ₂₁	a_{22}	<i>a</i> ₂₃
-1	4	7	a_{31}	a_{32}	<i>a</i> ₃₃

A matrix that has dimensions $m \times n$ has m rows and n columns. A square matrix has the same number of rows and columns ($n \times n$).

EXAMPLE

Represent the system by an augmented matrix and state the dimensions of the matrix:

1.
$$\begin{cases} 3x - 5y = 4\\ x + y = 2 \end{cases}$$

2.
$$\begin{cases} 2x + y + 3z = 4\\ -3x - y - 4z = 5\\ x + y + 2z = 0 \end{cases}$$

ROW-ECHELON FORM	
A matrix is in row-echelon form if it has ones down the main diagonal and zeros beneath:	$\begin{bmatrix} 1 & 2 & -5 & 7 \\ 0 & 1 & -3 & 2 \\ 0 & 0 & 1 & -4 \end{bmatrix}$
A matrix is in reduced row- echelon form if it has ones down the main diagonal and zeros above and below:	$\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 3 \end{bmatrix}$

Solve the system:	
1. $\begin{cases} x + 3y - 2z = 3 \\ -x - 2y + z = -2 \\ 2x - 7y + z = 1 \end{cases}$	2. $\begin{cases} 4x - y - z = 0\\ 4x - 2y = 0\\ 2x + z = 1 \end{cases}$
3. $\begin{cases} 2x - y - z = 0\\ x - y - z = -2\\ 3x - 2y - 2z = -2 \end{cases}$	4. $\begin{cases} 2x - 4y - z = 2\\ x + y - 3z = 10\\ -x - 7y + 8z = 2 \end{cases}$

SOLVING A SYSTEM WITH A MATRIX

Use technology to find the solution. Approximate values to the nearest thousandth.

 $\begin{cases} 12x - 4y - 7z = 8\\ -8x - 6y + 9z = 7\\ 34x + 6y - 2z = 5 \end{cases}$

From Precalculus with Modeling and Visualization 3rd ed. by Rockswold, 2006, p.801

10

EXAMPLE

```
Write the system in the form AX = B and solve the system by computing X = A<sup>-1</sup>B

1. \int 2x + y = 4
```

```
\int -x + 2y = -1
```

```
2. \begin{cases} 17x - 22y - 19z = -25.2\\ 3x + 13y - 9z = 105.9 \end{cases}
```

3x + 13y - 9z = 105.9

x - 2y + 6.1z = -23.55

EXAMPLES

Determine if the inverse exists by computing the determinant of the matrix A:

1.
$$A = \begin{bmatrix} 3 & 1 \\ 7 & -2 \end{bmatrix}$$

2.
$$A = \begin{bmatrix} -4 & 10 \\ 2 & -5 \end{bmatrix}$$

INIORS AND COFACTORS
The minor, denoted by
$$M_{\psi}$$
, for element a_{ψ} in the square matrix A is the real number computed by performing the following steps.
STEP 1: Delete the thr two and f the column from the matrix A .
STEP 2: M_{ψ} is equal to the determinant of the resulting matrix.
The cofactor, denoted A_{ψ} , for a_{ψ} is defined by $A_{\psi} = (-1)^{v_{\psi}} M_{\psi}$.
Example: Find the minor M_{11} and the cofactor A_{11} for the matrix
 $A = \begin{bmatrix} -8 & 0 & 4 \\ 4 & -6 & 7 \\ 2 & -3 & 5 \end{bmatrix}$

From Precalculus with Modeling and Visualization 3rd ed. by Rockswold, 2006, p.826

