5/19/2016

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

GRAPH

1. $y=3 x+2$
2. $y=-2 x-4$ \qquad
3. $y=\frac{5}{3} x+1$
4. $y=4 x^{2}$
5. $y=-\frac{2}{3} x^{3}$
b. $2 x-3 y=18$
6. $y=5$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

GRAPH

1. $y=-x+4$
2. $y=2 x-3$
3. $y=-\frac{1}{4} x+3$
4. $y=-\frac{1}{4} x^{2}$
5. $y=3 x^{3}$
6. $4 x+3 y=2$
7. $x=1$

DOMAIN AND RANGE

State the domain and range of each relation:

1. $\{(-2,4),(-3,-5),(-1,3),(4,,-5),(2,-3)\}$
2. $\{(-1,1),(0,4),(2,-5),(-3,4),(2,3)\}$

\qquad
\qquad
\qquad

FIND THE EQUATION OF THE LINE SHOWN \qquad

FIND THE EQUATION

1. Find the equation of the line with slope $\frac{2}{3}$ that passes through the point $(5,1)$ in slope-intercept form.
2. Find the equation of the line between the points $(2,3)$ and $(-1,7)$ in slopeintercept form.
3. Find the equation of the vertical line that passes through $(-4,1)$.
4. Find the equation of the line parallel to $2 x-3 y=8$ that passes through $(-1,7)$
in slope-intercept form.
5. Find the equation of the line perpendicular to $5 x+2 y=4$ that passes through
$(2,-8)$ in slope-intercept form.

FIND THE EQUATION

1. Find the equation of the line with slope $-\frac{1}{3}$ that passes through the point $(3,5)$ in slope-intercept form.
2. Find the equation of the line between the points $(-1,-8)$ and $(2,-14)$ in slopeintercept form.
3. Find the equation of the horizontal line that passes through $(2,17)$.
4. Find the equation of the line parallel to $3 x+3 y=5$ that passes through $(2,9)$ in slope-intercept form.
5. Find the equation of the line perpendicular to $-x+2 y=7$ that passes through $(1,1)$ in slope-intercept form.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

GAS MILEAGE

When empty, a large dump-truck gets about 15 miles per gallon. It is estimated that for each 3 tons of cargo it hauls, gas mileage decreases by $3 / 4$ mile per gallon.

1. If 10 tons of cargo is being carried, what is the truck's mileage?
2. If the truck's mileage is down to 10 miles per gallon, how much weight is it carrying?

BASEBALL CARD VALUE

After purchasing an autographed baseball card for $\$ 85$, its value increases by
$\$ 1.50$ per year. \qquad

1. What is the card's value 7 years after purchase?
2. How many years will it take for this card's value to reach $\$ 100$?

VERTICAL LINE TEST

If no vertical line intersects a graph in more than one place, then the graph represents a function.

\qquad
\qquad
\qquad
\qquad
\qquad

EVALUATING A FUNCTION

For the given function, evaluate at each value \qquad

EVALUATING A FUNCTION

For the given function, evaluate at each value
a. $g(x)=-3 x^{2}+x-7$
i. $g(-1)$
ii. $g(5 y)$
iii. $\frac{g(x+h)-g(x)}{h}$

DOMAIN \& RANGE

The domain consists of all values of the independent variable, x, allowed in the function.

The range consists of all values of the dependent variable, $f(x)$ or y, that result as the independent variable takes on values across the domain.

RULES FOR FINDING THE DOMAIN OF AN ALGEBRAIC
FUNCTION

1. If the function is a fraction, set the denominator equal to zero and solve for x. These are the values to EXCLUDE from the domain.
2. If the function is an EVEN radical, set what's under the radical greater than or equal to zero. Solve for x to obtain the domain.
3. The above rules can be combined.
4. If neither of the first two rules applies, the domain is all real numbers.

DOMAIN

Find the domain

1. $f(x)=2 x-5,-3 \leq x \leq 7$
2. $g(t)=\sqrt{t}$
3. $h(x)=\frac{1}{2 x-5}$
4. $f(p)=\frac{2 p+3}{\sqrt{p}}$

\qquad
\qquad

DOMAIN \& RANGE

Find the domain and range

\qquad

EVALUATING FUNCTIONS

Given the graph of a function, f, find

1. $f(-6)=$
2. $f(-2)=$
3. $f(x)=5$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

INCREASING OR DECREASING FUNCTIONS
A graph that is
increasing RISES as
you read from left to
right.

A graph that is
decreasing FALLS as
you read from left to
right.

From Precalculus with Modeling and Visuclizction 3rd ed. by Rockswold, 2006, p.243

INCREASING \& DECREASING

Determine where the function below is increasing and decreasing

INCREASING \& DECREASING

Identify where the graph is increasing and decreasing
a. b.
b.

\qquad

AVERAGE RATE OF CHANGE

The average rate of change of f from x_{1} to x_{2} is

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

\qquad

EXAMPLES

Find the average rate of change of the function over the specified interval.
a. $\quad f(x)=5 x-3$ from $x=-1$ to $x=3$
b. $g(x)=3-2 x^{2}$ from $x=2$ to $x=7$
c. $H(x)=3 x^{2}-2 x+4$ from $x=a$ to $x=a+h$

DIFFERENCE QUOTIENT

The formula for the average rate of change of a function can be rewritten as

$$
\frac{f(x+h)-f(x)}{h} \quad(h \neq 0)
$$

EXAMPLES

Find the difference quotient for
a. $\quad f(x)=-5 x+7$
b. $g(x)=-2 x^{2}-8$

\qquad
\qquad
\qquad

\qquad

\qquad

ODD FUNCTION

odd function

A function f is an odd function if $f(-x)=-f(x)$ for every x in its domain. The graph of an odd function is symmetrie with respect to the origin.
\qquad
\qquad

From Precalculus with Modeling and Visualization 3 ${ }^{\text {rd }}$ ed. by Rockswold, 2006, p. 248

EXAMPLES

Determine if the function is even, odd, or neither.
$f(x)=x^{4}-5 x^{2}+2$
a. $\quad g(x)=x^{3}-2 x^{2}+5$
c. $\quad h(x)=x^{3}-3 x+1$
c. $\quad k(x)=\frac{1}{x}+5$
e. graphically

ABSOLUTE VALUE

Recall, the absolute value of $x,|x|$, is the distance of x from the origin (always positive). We can define the absolute value of x piecewise as

$$
|x|= \begin{cases}x, & x \geq 0 \\ -x, & x<0\end{cases}
$$

EXAMPLE

Rewrite as a piecewise defined function and sketch the graph:

$$
g(x)=|1-x|
$$

\qquad

BASIC GRAPHS

$$
y=x^{2}
$$

Domain: $(-\infty, \infty)$
Range: $[0, \infty)$
No asymptotes
Passes through (0,0), (1,1),
$(2,4),(-2,4)$ and so on.

BASIC GRAPHS

$$
y=x^{3}
$$

Domain: $(-\infty, \infty)$
Range: $(-\infty, \infty)$
No asymptotes
Passes through $(0,0),(1,1)$,
$(2,8),(-2,-8)$ and so on.

BASIC GRAPHS

$$
y=\sqrt{x}
$$

Domain: $[0, \infty)$
Range: $[0, \infty)$ No asymptotes Passes through $(0,0),(1,1)$, $(4,2),(9,3)$ and so on.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

BASIC GRAPHS

$$
y=\sqrt[3]{x}
$$

Domain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$ No asymptotes Passes through (0,0), (1,1
$(8,2),(-8,-2)$ and so on.

\qquad

BASIC GRAPHS

$$
y=\frac{1}{x^{2}}
$$

Domain: $(-\infty, 0) \cup(0, \infty)$
Range: $(0, \infty)$
Asymptotes
Horizontal $y=0$
Vertical $x=0$
Passes through (1,1), $(2,1 / 4)$,
$(-1 / 2,4)$ and so on.

TRANSLATIONS

A translation of one of the basic graphs retains the different location in the plane. \qquad

VERTICAL TRANSLATIONS

Compared with the graph of $y=f(x)$,
-the graph of $y=f(x)+k$ is shifted upward k units
the graph of $y=f(x)-k$ is shifted downward k units
Assuming $k>0$

TRANSFORMATIONS

Graph

1. $f(x)=x^{3}+2$
2. $f(x)=\sqrt{x}-4$

HORIZONTAL TRANSLATIONS

Compared with the graph of $y=f(x)$,
the graph of $y=f(x+h)$ is shifted h units left
the graph of $y=f(x-h)$ is shifted h units right
Assuming $h>0$ \qquad

TRANSFORMATIONS

Graph

1. $f(x)=|x-2|$
2. $f(x)=\frac{1}{x+3}$
3. $f(x)=(x-3)^{2}+2$

VERTICAL STRETCHING AND SHRINKING

Compared with the graph of $y=f(x)$, the graph of $y=a f(x)$, where $a \neq 0$, is

- expanded vertically by a factor of a if $|a|>1$
* compressed vertically by a factor of a if $0<|a|<1$
- reflected about the x-axis if $a<0$

TRANSFORMATIONS

Graph

1. $f(x)=2|x|$
2. $f(x)=-\frac{1}{2} \sqrt{x}$ \qquad

HORIZONTAL STRETCHING AND SHRINKING

Compared with the graph of $y=f(x)$, the graph of $y=f(a x)$,
where $a \neq 0$, is
" compressed horizontally by a factor of a if $|a|>1$
expanded horizontally by a factor of a if $0<|a|<1$
" reflected about the y-axis if $a<0$

TRANSFORMATIONS
Graph
1. $f(x)=\sqrt{-x}$
2. $g(x)=3 \sqrt{-x+2}-1$

\qquad

PIECEWISE-DEFINED FUNCTIONS

Piecewise-defined functions are defined by different rules on different parts of their domain.

Help for sketching the graph is available on my website under the "General Handouts" link. \qquad

CONTINUITY

A function is continuous where you can draw the graph without lifting your pen from the paper.

A function is continuous where it has no holes, breaks, jumps, gaps, or asymptotes.

PIECEWISE-DEFINED FUNCTIONS

For the function

$$
f(x)= \begin{cases}2 x+1 & \text { if }-3 \leq x<0 \\ x-1 & \text { if } 0 \leq x \leq 3\end{cases}
$$

\qquad

PIECEWISE-DEFINED FUNCTIONS

For the function

$$
f(x)= \begin{cases}-3 & \text { if } x<-2 \\ 4 x+1 & \text { if }-2 \leq x\end{cases}
$$

a. Determine the domain.
b. Evaluate $f(-4), f(-2)$, and $f(0)$.
c. Graph f.
d. Is f continuous on its domain? \qquad

OPERATIONS ON FUNCTIONS

For two functions, f and g, we define the new functions
$(f+g)(x)=f(x)+g(x)$ with domain D
$(f-g)(x)=f(x)-g(x)$ with domain D
$(f g)(x)=f(x) \cdot g(x)$ with domain D
$(f / g)(x)=f(x) / g(x)$ with domain D and
$g(x) \neq 0$
Where D is the domain that f and g have in common.

ALGEBRAIC OPERATIONS ON FUNCTIONS

For the functions given, find $f+g, f-g, f g$, and f / g. \qquad

COMPOSITION OF FUNCTIONS

For the functions f and g, we define the composition function

$$
(f \circ g)(x)=f(g(x))
$$

The domain is all values of x in the domain of g for which $g(x)$ is in the domain of f.

COMPOSITE FUNCTIONS

If $f(x)=\sqrt{4-x}$ and $g(x)=x^{2}$, find
a. $(f \circ g)(x)$
b. $(g \circ f)(x)$
c. $(f \circ f)(x)$

State the domain of each

COMPOSITE FUNCTIONS

If $f(x)=\frac{1}{3 x}$ and $g(x)=\frac{2}{x-1}$, find
a. $(f \circ g)(x)$
b. $(g \circ f)(x)$
c. $(f \circ f)(x)$

State the domain of each

HORIZONTAL LINE TEST

If no horizontal line intersects the graph of a function more than once, then the function is a one-to-one function.

\qquad

INVERSE OF A FUNCTION

If $f(x)$ is a function, its inverse, denoted $f^{-1}(x)$, "undoes" what f "does".
That is, if $f(a)=b$ then $f^{-1}(b)=a$
Nooe. $\quad f^{-1} \neq \frac{1}{f}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

relationship between a function and its inverse

\qquad

\qquad

TO FIND THE INVERSE OF A FUNCTION:

Write the function as $y=f(x)$

Exchange x \& y

Solve for y

Write the solution using inverse notation

$$
\begin{aligned}
& \text { Example } f(x)=5 x \\
& y=5 x \\
& x=5 y \\
& y=\frac{1}{5} x \\
& f^{-1}(x)=\frac{1}{5} x
\end{aligned}
$$

INVERSE FUNCTIONS

For the function given, find $f^{-1}(x)$

1. $f(x)=1-\frac{1}{2} x^{3}$
2. $f(x)=\frac{x-1}{2}$
3. $f(x)=\frac{3 x}{x-1}$
4. $f(x)=x^{4}-1$

5/19/2016

INVERSE FUNCTIONS

For the function given, find $f^{-1}(x)$

1. $f(x)=5 x+3$
2. $f(x)=\frac{5 x+1}{2 x-3}$
3. $f(x)=\sqrt{x}-4$
