1. Determine whether the functions are linearly independent: $x^{2}, x^{2}+1$, $x^{2}-1$.
2. If $y_{1}=e^{5 x}$ is a solution of $y^{\prime \prime}-25 y=0$, use the reduction of order technique (formula) to find a second solution $y_{2}(x)$.
3. Solve $y^{\prime \prime}-3 y^{\prime}+2 y=0$.
4. Solve $y^{\prime \prime}-10 y^{\prime}+25 y=0$.
5. Solve the IVP $\frac{d^{2} y}{d \theta^{2}}+y=0, y\left(\frac{\pi}{3}\right)=0, y^{\prime}\left(\frac{\pi}{3}\right)=2$.
6. Solve $y^{\prime \prime}+2 y^{\prime}=2 x+5-e^{-2 x}$ by undetermined coefficients.
7. Solve $y^{\prime \prime}+y=\sec ^{2} x$ by variation of parameters.
8. Solve $x^{2} y^{\prime \prime}-7 x y^{\prime}+41 y=0$.
9. Determine whether the functions are linearly independent: $x^{2}, x^{2}+1$, $x^{2}-1$.

$$
W=\left|\begin{array}{ccc}
x^{2} & x^{2}+1 & x^{2}-1 \\
2 x & 2 x & 2 x \\
2 & 2 & 2
\end{array}\right|
$$

Expanding along the first row,
$W=x^{2}(2 x \cdot 2-2 x \cdot 2)-\left(x^{2}+1\right)(2 x \cdot 2-2 x \cdot 2)+\left(x^{2}-1\right)(2 x \cdot 2-2 x \cdot 2)=0$
Thus, the functions are linearly dependent.
2. If $y_{1}=e^{5 x}$ is a solution of $y^{\prime \prime}-25 y=0$, use the reduction of order technique (formula) to find a second solution $y_{2}(x)$.

$$
\begin{gathered}
y_{2}=y_{1} \int \frac{e^{-\int P(x) d x}}{y_{1}^{2}} d x \\
y_{2}=e^{5 x} \int \frac{e^{-\int 0 d x}}{e^{10 x}} d x \\
y_{2}=e^{5 x} \int \frac{e^{0}}{e^{10 x}} d x \\
y_{2}=e^{5 x} \int \frac{1}{e^{10 x}} d x \\
y_{2}=e^{5 x} \int e^{-10 x} d x \\
y_{2}=e^{5 x}\left(\frac{-1}{10} e^{-10 x}\right) \\
y_{2}=\frac{-1}{10} e^{-5 x}
\end{gathered}
$$

3. Solve $y^{\prime \prime}-3 y^{\prime}+2 y=0$.

The auxiliary equation is $m^{2}-3 m+2=0$ so $m=1,2$ and $y=C_{1} e^{x}+$ $C_{2} e^{2 x}$.
4. Solve $y^{\prime \prime}-10 y^{\prime}+25 y=0$.

The auxiliary equation is $m^{2}-10 m+25=0$ so $m=5,5$ and $y=$ $C_{1} e^{5 x}+C_{2} x e^{5 x}$.
5. Solve the IVP $\frac{d^{2} y}{d \theta^{2}}+y=0, y\left(\frac{\pi}{3}\right)=0, y^{\prime}\left(\frac{\pi}{3}\right)=2$.

The auxiliary equation is $m^{2}+1=0$ so $m= \pm i$ and $y=C_{1} \cos \theta+C_{2} \sin \theta$. Then, $y^{\prime}=-C_{1} \sin \theta+C_{2} \cos \theta$. Applying the initial conditions, we find

$$
\begin{aligned}
0 & =C_{1} \cos \frac{\pi}{3}+C_{2} \sin \frac{\pi}{3} \\
2 & =-C_{1} \sin \frac{\pi}{3}+C_{2} \cos \frac{\pi}{3}
\end{aligned}
$$

so the system of equations is

$$
\begin{aligned}
0 & =C_{1}\left(\frac{1}{2}\right)+C_{2}\left(\frac{\sqrt{3}}{2}\right) \\
2 & =-C_{1}\left(\frac{\sqrt{3}}{2}\right)+C_{2}\left(\frac{1}{2}\right)
\end{aligned}
$$

or

$$
\begin{gathered}
0=C_{1}+\sqrt{3} C_{2} \\
2=-\sqrt{3} C_{1}+C_{2}
\end{gathered}
$$

solving this system we find $C_{1}=-\frac{\sqrt{3}}{2}$ and $C_{2}=\frac{1}{2}$. So the solution is

$$
y=-\frac{\sqrt{3}}{2} \cos \theta+\frac{1}{2} \sin \theta
$$

6. Solve $y^{\prime \prime}+2 y^{\prime}=2 x+5-e^{-2 x}$ by undetermined coefficients.

Solving $y^{\prime \prime}+2 y^{\prime}=0$ uses the auxiliary equation $m^{2}+2 m=0$ so $m=0,-2$ and $y_{c}=C_{1}+C_{2} e^{-2 x}$. Assume $y_{p}=a x^{2}+b x+c x e^{-2 x}$ (both the polynomial and the exponential were multiplied by x since each had a term that appeared in y_{c}). Then $y_{p}^{\prime}=2 a x+b+c e^{-2 x}-2 c x e^{-2 x}$ and $y^{\prime \prime}=2 a-4 c e^{-2 x}+4 c x e^{-2 x}$. Substituting into the DE,

$$
\begin{gathered}
2 x+5-e^{-2 x}=2 a-4 c e^{-2 x}+4 c x e^{-2 x}+2\left(2 a x+b+c e^{-2 x}-2 c x e^{-2 x}\right) \\
2 x+5-e^{-2 x}=2 a+2 b+4 a x-2 c e^{-2 x}
\end{gathered}
$$

from which we get the system of equations $2 a+2 b=5,4 a=2$, and $-2 c=-1$. Solving this system gives $a=\frac{1}{2}, b=2$, and $c=\frac{1}{2}$ so $y_{p}=\frac{1}{2} x^{2}+2 x+\frac{1}{2} x e^{-2 x}$. Thus, the solution is $y=C_{1}+C_{2} e^{-2 x}+\frac{1}{2} x^{2}+2 x+\frac{1}{2} x e^{-2 x}$
7. Solve $y^{\prime \prime}+y=\sec ^{2} x$ by variation of parameters.

Solving $y^{\prime \prime}+y=0$ has the auxiliary equation $m^{2}+1=0$ so $m= \pm i$ and $y_{c}=C_{1} \cos x+C_{2} \sin x$. Now, $y_{1}=\cos x, y_{2}=\sin x$, and $f(x)=\sec ^{2} x$. So, assuming $y_{p}=u_{1} y_{1}+u_{2} y_{2}$,

$$
\begin{gathered}
W=\left|\begin{array}{cc}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=\cos ^{2} x+\sin ^{2} x=1 \\
W_{1}=\left|\begin{array}{cc}
0 & \sin x \\
\sec ^{2} x & \cos x
\end{array}\right|=0+\sin x \sec ^{2} x=\sec x \tan x \\
W_{2}=\left|\begin{array}{cc}
\cos x & 0 \\
-\sin x & \sec ^{2} x
\end{array}\right|=\cos x \sec ^{2} x-0=\sec x
\end{gathered}
$$

Now we have $u_{1}^{\prime}=\frac{W_{1}}{W}=\sec x \tan x$ and $u_{2}^{\prime}=\frac{W_{2}}{W}=\sec x$. Then integrating gives

$$
\begin{gathered}
u_{1}=\int \sec x \tan x=\sec x \\
u_{2}=\int \sec x=\ln |\sec x+\tan x|
\end{gathered}
$$

So it follows that $y_{p}=\cos x \sec x+\sin x \ln |\sec x+\tan x|=1+\sin x+$ $\ln |\sec x+\tan x|$. Then the solution is

$$
y=C_{1} \cos x+C_{2} \sin x+1+\sin x \ln |\sec x+\tan x|
$$

8. Solve $x^{2} y^{\prime \prime}-7 x y^{\prime}+41 y=0$.

Letting $x=e^{t}$ we have $d x=e^{t} d t$ or $\frac{d t}{d x}=e^{-t}$ then

$$
\frac{d y}{d x}=\frac{d y}{d t} \frac{d t}{d x}=e^{-t} \frac{d y}{d t}
$$

$\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d t}\left(e^{-t} \frac{d y}{d t}\right) \frac{d t}{d x}=\left(e^{-t} \frac{d^{2} y}{d t^{2}}-e^{-t} \frac{d y}{d t}\right) e^{-t}=e^{-2 t} \frac{d^{2} y}{d t^{2}}-e^{-2 t} \frac{d y}{d t}$
and substituting into the DE gives

$$
\begin{aligned}
0=x^{2} y^{\prime \prime}-7 x y^{\prime}+41 y & =\left(e^{t}\right)^{2}\left(e^{-2 t} \frac{d^{2} y}{d t^{2}}-e^{-2 t} \frac{d y}{d t}\right)-7 e^{t}\left(e^{-t} \frac{d y}{d t}\right)+41 y \\
& =e^{2 t}\left(e^{-2 t} \frac{d^{2} y}{d t^{2}}-e^{-2 t} \frac{d y}{d t}\right)-7 \frac{d y}{d t}+41 y \\
& =\frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}-7 \frac{d y}{d t}+41 y \\
& =\frac{d^{2} y}{d t^{2}}-8 \frac{d y}{d t}+41 y
\end{aligned}
$$

so solving $\frac{d^{2} y}{d t^{2}}-8 \frac{d y}{d t}+41 y=0$ we have the auxiliary equation $m^{2}-8 m+41=0$ which gives $m=4 \pm 5 i$. So, $y=C_{1} e^{4 t} \cos 5 t+C_{2} e^{4 t} \sin 5 t$ and substituting $t=\ln x$ we have $y=C_{1} e^{4 \ln x} \cos (5 \ln x)+C_{2} e^{4 \ln x} \sin (5 \ln x)$ or

$$
y=C_{1} x^{4} \cos (5 \ln x)+C_{2} x^{4} \sin (5 \ln x)
$$

