## MAP 2302 Sample Problems, Exam 1

1. Give the order of the differential equation $\frac{d^{2} x}{d y^{2}}-3 x=\sin y$. State whether the equation is linear or nonlinear.
2. Use the Existence of a Unique Solution Theorem to determine if a unique solution exists for the initial value problem $y^{\prime}=\sqrt{x y}, y(1)=0$.
3. Obtain the direction field for $y^{\prime}=2 x-y$.
4. Find the critical points and phase portrait of $\frac{d y}{d x}=y^{2}\left(4-y^{2}\right)$. Sketch typical solution curves in the regions in the $x y$-plane determined by the graphs of the equilibrium solutions.
5. Solve $x \sqrt{1+y^{2}} d x=y \sqrt{1+x^{2}} d y$.
6. Solve $(1+x) \frac{d y}{d x}-x y=x+x^{2}$. Give the largest interval over which the general solution is defined.
7. Determine whether $\left(x^{3}+y^{3}\right) d x+3 x y^{2} d y=0$ is exact. If it is exact, solve it.
8. Solve the initial value problem $\left(x^{2}+y^{2}-5\right) d x=(y+x y) d y, y(0)=1$ by finding an appropriate integrating factor.
9. Solve $\frac{d y}{d x}=\frac{x+3 y}{3 x+y}$ by using an appropriate substitution
10. Solve $\frac{d y}{d x}-y=e^{x} y^{2}$ by using an appropriate substitution.
11. Solve $\frac{d y}{d x}=\sin (x+y)$ by using an appropriate substitution.
12. Initially 100 milligrams of a radioactive substance was present. After 6 hours the mass had decreased by $3 \%$. If the rate of decay is proportional to the amount of substance present at time $t$, find the amount remaining after 24 hours.

## Solutions:

1. 2nd order linear
2. A unique solution is not guaranteed by the theorem 3.
3. Critical points $y=0, \pm 2$
4. $\sqrt{1+x^{2}}+C=\sqrt{1+y^{2}}$
5. $y=\frac{-3 x}{1+x}-\frac{3}{1+x}-\frac{x^{2}}{1+x}+\frac{C e^{x}}{1+x}$
6. $\frac{x^{4}}{4}+x y^{3}=C$
7. $\frac{4-y^{2}}{2(x+1)^{2}}+\ln |x+1|+\frac{2}{x+1}=\frac{7}{2}$
8. $\frac{(y-x)^{2}}{y+x}=C$
9. $y=\frac{2}{C e^{-x}-e^{x}}$
10. $\tan (x+y)-\sec (x+y)=x+C$
11. Approximately 88.53 milligrams
