Determine a region of the $x y$-plane for which the given differential equation would have a unique solution whose graph passes through a point $\left(x_{0}, y_{0}\right)$ in the region.

1. $\frac{d y}{d x}=y^{2 / 3}$
2. $x \frac{d y}{d x}=y$
3. $\left(4-y^{2}\right) y^{\prime}=x^{2}$
4. Determine whether the Existence and Uniqueness Theorem guarantees that the differential equation $y^{\prime}=\sqrt{y^{2}-9}$ posses a unique solution through the point:
a. $(1,4)$
b. $(2,-3)$
5. Solve $\frac{d y}{d x}=e^{3 x+2 y}$
6. Solve $\frac{d y}{d x}=\frac{x y+3 x-y-3}{x y-2 x+4 y-8}$
7. Solve $x^{2} \frac{d y}{d x}=y-x y, y(-1)=-1$
8. Solve $x^{2} y^{\prime}+x(x+2) y=e^{x}$
9. Solve $\cos x \frac{d y}{d x}+(\sin x) y=1$
10. Solve $(x+1) \frac{d y}{d x}+y=\ln x, y(1)=10$
11. Find a continuous solution: $\frac{d y}{d x}+2 x y=f(x), y(0)=2$, where $f(x)=\left\{\begin{array}{lr}x, & 0 \leq x<1 \\ 0, & x \geq 1\end{array}\right.$
12. Solve $\frac{d y}{d x}=(x+y+1)^{2}$
13. Solve $\frac{d y}{d x}=\tan ^{2}(x+y)$

Answers:

1. half-planes defined by either $y>0$ or $y<0$
2. half-planes defined by either $x>0$ or $x<0$
3. the regions defined by $y>2, y<-2$, or $-2<y<2$
4. a. yes b. no
5. $-3 e^{-2 y}=2 e^{3 x}+C$
6. $(y+3)^{5} e^{x}=C(x+4)^{5} e^{y}$
7. $y=\frac{e^{-\left(1+\frac{1}{x}\right)}}{x}$
8. $y=\frac{1}{2} x^{-2} e^{x}+C x^{-2} e^{-x}$
9. $y=\sin x+C \cos x$
10. $(x+1) y=x \ln x-x+21$
11. $y=\left\{\begin{array}{l}\frac{1}{2}+\frac{3}{2} e^{-x^{2}}, 0 \leq x<1 \\ \left(\frac{1}{2} e+\frac{3}{2}\right) e^{-x^{2}}, x \geq 1\end{array}\right.$
12. $y=-x-1+\tan (x+C)$
13. $2 y-2 x+\sin 2(x+y)=C$
