
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

End Behavior

- A polynomial of odd degree with a positive leading coefficient has negative y-values for large negative x-values, and positive y values for large positive X-values. \qquad
- A polynomial of even degree with a positive leading coefficient has positive y-values for \qquad both large positive and large negative x values. \qquad
\qquad

Factor Theorem

Let $P(x)$ be a polynomial with real-number coefficients. Then $(x-a)$ is a factor of $P(x)$ if and only if $\mathrm{P}(\mathrm{a})=0$.

If a polynomial has a zero of odd multiplicity, the graph crosses the x-axis at that point. If a polynomial has a zero of even multiplicity, the graph "bounces off" the X -axis at that point.

Steps to Graph a Polynomial

- Obtain the y-intercept.
- Factor the polynomial completely to locate the X -intercepts.
- Use the behavior of the ends and the multiplicity of the zeros to determine the shape.
\qquad
\qquad
\qquad
\qquad
\qquad

Examples

- Graph $g(x)=(x+4)^{2}(x-2)$
- Graph $h(x)=(X+1)^{3}(x-2)^{2}$
- Graph $S(x)=x^{4}+3 x^{3}-x^{2}-3 x$
- Graph $m(x)=x^{4}-13 x^{2}+36$ \qquad
\qquad

