The general (or standard) form of a linear equation is denoted by $\mathbf{a x}+\mathbf{b y}=\mathbf{c}$, where \mathbf{a}, \mathbf{b}, and \mathbf{c} are real numbers, \mathbf{a} and \mathbf{b} cannot both be 0 . \qquad
These are examples of linear equations:
$-4 x+2 y=-6.2$
$y=3.7 x-5$
$y=-3$
These are not linear equations:
$x^{2}+y^{2}=9$
$\frac{4}{x}+y=6.5$
$y-\sqrt{x}=7$

Increasing, Decreasing, and Constant Functions

A function is increasing on an interval if it is rising as it goes left to right on the interval.
(As x-coordinates increase, y-coordinates increase.)

A function is decreasing on an interval if it is falling as it goes left to right on the interval.
(As x-coordinates increase, y-coordinates decrease.)

A function is constant on an interval if the graph is a horizontal line on the interval.
(As x-coordinates increase, y-coordinates remain constant.)

	Notes
\checkmark We read a graph from left to right, and the interval over	
which a function is increasing, decreasing, or constant is	
given only in terms of the x-values. So, we use interval	
notation referring to the x-coordinates only.	

Definition of a Linear Function

A linear function can be written in the form $\boldsymbol{f}(\mathbf{x})=\boldsymbol{a} \mathbf{x}+\boldsymbol{b}$, where \boldsymbol{a} and \boldsymbol{b} are constants (fixed values). \qquad
Examples:
$y=-8 x+2 ; f(x)=-5 ; \quad h(t)=1 / 2-9 t \quad$ represent linear functions.
$f(x)=x^{3}-2 x ; y=8^{x}+9 ; h(t)=1 / t \quad$ do not represent linear functions.

	Linear Functions
Notes:	
1. The graph of a linear function is a straight line.	
2. The input and output variables can only be raised to	
the first power.	
3. The rate of change (slope) of a linear function $f(x)=m x+b$ is given by m. 4. A linear function has a constant rate of change. 5. The vertical intercept of a linear function $f(x)=m x+b$ is given by b.	

Equations of Horizontal and Vertical Lines

Horizontal Line: $\mathrm{y}=b$, where \boldsymbol{b} is a constant. The line intersects the y-axis at $(0, b)$. Recall that the slope of a horizontal line is 0 . \qquad
Example: $y=3$

Vertical Line: $\mathrm{x}=a$ where \boldsymbol{a} is a constant. The line intersects the x -axis at $(a, 0)$. Recall that the slope of a vertical line is undefined.

Example: $x=3$

Parallel and Perpendicular Lines

Parallel lines have equal slopes.
Slope of L 1 is $1 / 2$ and slope of L 2 is $1 / 2$.

Perpendicular lines have negative reciprocal slopes.
Slope of $L 1$ is $1 / 2$ and slope of $L 2$ is -2 .

Applications involving Break-Even Related Functions

Revenue: Total amount of money received by a business for its products or services.
If a business produces and sells \mathbf{x} items, $R(x)=$ price \bullet quantity

Cost: Fixed costs (e.g., rent, equipment, etc.) plus Variable costs (e.g., labor, raw materials, utilities, etc.) $C(x)=$ fixed cost + variable cost

Profit: Amount of money made after all costs and expenses are paid.
$P(x)=$ Revenue - Cost or $R(x)-C(x)$

Break-even point: Expenses or costs and the revenue are equal; that is, there is neither a profit nor a loss (the profit is 0). Cost = Revenue or $C(x)=R(x)$

Solving a Linear System with Two Variables by Substitution

(1) Choose one of the equations and solve it for one of the variables in terms of the other.
(2) Substitute the expression from step (1) into the other equation. This will result in an equation with just one variable. Solve for the variable. \qquad
(3) Substitute the value found in step (2) into either of the original equations to find the remaining variable. \qquad
(4) Write the answer as an ordered pair and check the solution to the system in both original equations. \qquad
Note: When solving an application problem, state the answer in the context of the problem. \qquad
\qquad

Solving a Linear System with Two Variables by Elimination

(1) Eliminate one of the variables by using the concept of
"opposites." If necessary, multiply one or both equations by a nonzero constant that will produce coefficients of either \mathbf{x} or \mathbf{y} that are opposites of each other.
(2) Add the two equations, making sure that one of the variables drops out, leaving one equation and only one unknown.
(3) Solve the resulting equation for the variable.
(4) Back-substitute the value found in (3) into one of the original equations to find the value of the remaining variable.
(5) Write the answer as an ordered pair and check the solution to the system in both original equations.

Note: When solving an application problem, state the answer in the context of the problem.

Linear Inequalities

A linear inequality in two variables can be written in one of the following forms:
$a \mathrm{x}+b \mathrm{y}>c$
$a \mathrm{x}+b \mathrm{y}<c$
$a \mathrm{x}+b \mathrm{y} \geq c$
$a \mathrm{x}+b \mathrm{y} \leq c$
\qquad
\qquad
where a, b, and c are real numbers, and a and b are not both zero. \qquad
\qquad
An ordered pair (x, y) will be a solution of a linear inequality in two variables if it satisfies the inequality

| Graphical Solution |
| :--- | :--- |
| (1) Replace the inequality symbol with an equal sign and graph the |
| line, which we call the "boundary line." |
| AIf the inequality symbol is \geq or \leq, the line will be part of the |
| solution set. Draw a solid line to include the line in the solution. |
| \Rightarrow If the inequality symbol is $>$ or <, the line will not be part of the |
| solution set. Draw a dasheded line-to exclude the line. |
| (2) Select any point ("test point") that does not lie on the line to |
| determine the region whose points will satisfy the inequality. |
| \Rightarrow If the point (0,0) is not on the line, using it as a test point is |
| convenient for calculations. |
| (3) If the test point satisfies the inequality, shade the region that |
| contains the point. If it does not satisfy the inequality, then shade |
| the opposite region. |
| \Rightarrow The shaded region will contain all the points that satisfy the |
| inequality. |

System of Linear Inequalities

A system of linear inequalities in two variables is a set of two or more linear inequalities to be solved together.
\qquad

The solution set will consist of all ordered pairs (x, y) \qquad that satisfy the inequalities simultaneously.

We find the solution of the system by graphing each linear inequality and identifying where the shaded \qquad regions overlap.

Solving a System of Linear Inequalities in Two Variables (1) Solve each of the inequalities for \mathbf{y}
(2) For each inequality, replace the inequality symbol with an equal sign and graph the line (boundary line).
\Rightarrow For \geq or \leq, draw a solid line to include the line in the solution. \Rightarrow For > or <, draw a dashed line to exclude the line.
(3) Shade the appropriate regions on all inequalities
(4) The solution of the system will be the shaded region where all the graphs overlap. If the shaded regions do not overlap, then the system has no solutions.
(5) Use test points from all regions to verify the result.
(6) State any vertices

\qquad

Absolute Value Function: $f(x)=|x|$

$$
\text { Domain: }(-\infty, \infty)
$$

Range: [0, ∞

Reciprocal Function: $f(x)=\frac{1}{x}$
Domain: $(-\infty, 0) \cup(0, \infty)$
Range: $(-\infty, 0) \cup(0, \infty)$

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Even and Odd Functions

Even Function: Graph is symmetric about the \mathbf{y}-axis.
If (x, y) is a point on the graph, then $(-x, y)$ is also a point on the graph.
Example:

Odd Function: Graph is symmetric about the origin. If (x, y) is a point on the graph, then $(-x,-y)$ is also a point on the graph. \qquad
Example:

a. Determine if $f(x)=x^{2}-6$ is an even function.
$f(-x)=(-x)^{2}-6$

$$
=x^{2}-6
$$

Since $f(-x)=f(x)$, this is an even function. Observe graph is symmetric about the y-axis:

b. Determine if $f(x)=x^{2}-3 x$ is an even function.
$f(-x)=(-x)^{2}-3(-x)$
Since $f(-x) \neq f(x)$, this is not an even function. Graph is not symmetric about the y-axis:

\qquad
\qquad
\qquad
\qquad

Algebraic Test for Odd Function

$f(-x)=-f(x)$
(Replacing x with -x gives the negative of the original function.)
a. Determine if $f(x)=x^{3}-3 x$ is an odd function.
$f(-x)=(-x)^{3}-3(-x)$

Since $f(-x)=-f(x)$, this is an odd function. Observe graph is symmetric about the origin:
b. Determine if $f(x)=x^{3}-3 x^{2}$ is an odd function.
$f(-x)=(-x)^{3}-3(-x)^{2}$
$=-x^{3}-3 x^{2}$ \qquad
Since $\mathrm{f}(-\mathrm{x}) \neq-\mathrm{f}(\mathrm{x})$, this is not an odd function. Graph is not symmetric about the origin:

Global or Absolute Maximum of a Function Highest point over the entire domain of a function

\qquad
\qquad
\qquad
Global or Absolute Minimum of a Function Lowest point over the entire domain of a function. \qquad

\qquad
\qquad
\qquad

Relative Maximum and Relative Minimum

Turning Points: Where a graph of a function changes behavior from increasing to decreasing or vice versa; highest or lowest points at specific intervals of the graph.

Each turning point is called a Relative (or local) Maximum or a Relative (or local) Minimum.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Given the graph of a function below, answer the questions.

a. At what value of \mathbf{x} is the relative minimum occurring?

The graph has a turning point where it changes its behavior from a decreasing interval to an increasing interval, when $x=-8$. Therefore, this function has a relative minimum at $\mathrm{x}=-8$.
b. What is the relative minimum?

The relative minimum is the output of the function at $x=-8$, or $f(-8)=-4$.
The relative minimum in ordered pair form would be $(-8,-4)$.
(Contd.)

c. For what values of \mathbf{x} does the function have relative maxima? The graph has two turning points where it changes its behavior from an increasing interval to a decreasing interval at x-values of -12 and 4 .
This function has relative maxima at $x=-12$ and at $x=4$
d. What are the relative maxima?

The relative maxima are $f(-12)=-2$ and $f(4)=8$.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Horizontal Shifts (left)

For a function $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and $\mathrm{c}>\mathrm{o}$:
The graph of $y=f(x+c)$ is equivalent to the graph of $f(x)$ shifted \qquad left c units.

Example: \qquad

\qquad
\qquad
\qquad
\qquad

Notice that every point on the graph of $f(x)=(x+4)^{2}$ is 4 units to the left of a corresponding point on the graph of $f(x)=x^{2}$.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Summary of Vertical and Horizontal Translations

The location of the graph of the function is changed, but the size and shape of the graph is not changed.

Vertical shifts: Adding or subtracting "outside" the function Horizontal shifts: Adding or subtracting "inside" the function \qquad
$f(x)+c \quad$ Shift graph of $f(x)$ upward c units
$f(x)$ - c Shift graph of $f(x)$ downward c units
$f(x+c) \quad$ Shift graph of $f(x)$ left c units
$f(x-c) \quad$ Shift graph of $f(x)$ right c units

Identify the following graph as a translation of one of the basic functions, and write the equation for the graph.

This is the graph of $f(x)=x^{3}$ shifted left 5 units and down 2 units.
$f(x)=(x+5)^{3}-2$

Reflections about the x-axis

The graph of $y=-f(x)$ is obtained by reflecting the graph of $y=f(x)$ with respect to the x-axis.

Example:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Given the graph below, (a) state the basic function, (b) describe the transformations applied, and (c) write the equation for the given graph.

a. $f(x)=|x|$
b. Reflection about the x-axis Horizontal shift: 3 units right
Vertical shift: 4 units upward
c. $f(x)=-|x-3|+4$

Stretching and Compressing

Let \mathbf{c} be a constant. The graph of $\mathrm{y}=\mathbf{c f}(\mathrm{x})$ is obtained by vertically stretching or compressing the graph of $y=f(x)$.
\checkmark If $|\mathbf{c}|>1$, the graph will be vertically stretched by a factor of \mathbf{c}.
\checkmark If $0<|c|<1$, the graph will be vertically compressed by a factor of \mathbf{c}.

\qquad

	Stretching and Compressing
8	Let \mathbf{c} be a constant. The graph of $\mathrm{y}=\mathbf{c f}(\mathrm{x})$ is obtained by vertically stretching or compressing the graph of $y=f(x)$. \checkmark If $\|\mathbf{c}\|>1$, the graph will be vertically stretched by a factor of \mathbf{c}. \checkmark If $0<\|\mathbf{c}\|<1$, the graph will be vertically compressed by a factor of \mathbf{c}.

Stretching and Compressing

Example:

In $f(x)=5 x^{2}$, stretching "elongates" the graph; the transformed graph appears "narrower" than the graph of $f(x)=x^{2}$.

In $f(x)=(1 / 5) x^{2}$, compressing "flattens" the graph; the transformed graph appears "wider" than the graph of $f(x)=x^{2}$.

Combining Multiple Transformations
 to Sketch a Graph

In general, it may be useful to use the following order: \qquad

1. Reflection
2. Vertical stretch or compression \qquad
3. Horizontal shift
4. Vertical shift

Other possible ordering will produce the same result, \qquad but do the vertical shift last.
\qquad
\qquad
Let f be a function. Let $\left(\mathrm{x}_{1}, \mathrm{f}\left(\mathrm{x}_{1}\right)\right)$ and ($\left.\mathrm{x}_{2}, \mathrm{f}\left(\mathrm{x}_{2}\right)\right)$ represent two distinct points on the graph of f, where $x_{1} \neq x_{2}$.
The average rate of change of f between x_{1} and x_{2} is given

$$
\frac{\Delta \mathrm{y}}{\Delta \mathrm{x}}=\frac{\mathrm{f}\left(\mathrm{x}_{2}\right)-\mathrm{f}\left(\mathrm{x}_{1}\right)}{\mathrm{x}_{2}-\mathrm{x}_{1}}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Difference Quotient

Let \mathbf{f} be a function and \mathbf{h} a nonzero constant. Let ($\mathrm{x}, \mathrm{f}(\mathrm{x})$) and ($x+h, f(x+h)$) represent two distinct points on the graph of f.
The average rate of change of \mathbf{f} between \mathbf{x} and $\mathbf{x}+\boldsymbol{h}$ is the difference quotient, given by

Notice that the main operations involved in the "difference quotient" are subtraction (difference) and division (quotient)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Find the piecewise-defined function whose graph is shown.

$$
f(x)= \begin{cases}|x+2|-6 & \text { if } \quad x \leq 1 \\ -2 & \text { if } \quad x>1\end{cases}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\checkmark If \mathbf{x} represents an algebraic expression and $a>0$, then $|\mathrm{x}|=a$ will have two solutions:

$$
=a \quad \text { or } \quad \mathrm{x}=-a
$$

\qquad
\qquad
\checkmark If $a<0$, then $|\mathrm{x}|=a$ will have no real solution, since the absolute value of any quantity is never negative. \qquad
\qquad
Make sure that the absolute value expression has been isolated on one side of the equation before solving

\qquad
\qquad
\qquad

Definition of Quadratic Equation

A quadratic equation in \mathbf{x} is a second-degree equation that has the standard form

$$
a x^{2}+b x+c=0
$$

where a, b, and c are real numbers, $a \neq 0$. \qquad
a : leading coefficient \qquad
b : coefficient of the first-degree term
c: constant term \qquad
\qquad
\qquad

Solving Quadratic Equations by Factoring

Zero Product Property:

If a and b are real numbers, and $a b=0$, then either $a=0$, or $b=0$, or both a and b are zero.

Factoring Method:

1. Write the equation in standard form. (Make sure one side of the equation is 0 .) \qquad
2. Factor the nonzero side of the equation.
3. Apply the zero-product property. (Set each factor $=0$.) \qquad
4. Solve for the variable.
5. Verify your answers in the original equation

Solving by the Square Root Method

Square Root Method: Useful method when $b=0$ in $a x^{2}+b x+c=0$ (that is, no presence of the first-degree term, $b x$, in the standard form).
\qquad
\qquad
Square Root Property:
If $x^{2}=k$, then $x=\sqrt{k}$ or $x=-\sqrt{k}$ for k constant. \qquad Solutions of quadratic equations of the form $x^{2}=k$ are given
\qquad
\qquad

Solving by the Square Root Method

1. Isolate the squared variable term.
2. Apply the square root property to undo the square Remember to insert " \pm " on the numeric side of the equation, since we want both the positive and negative square roots.
3. Simplify the radical expression.
4. Verify your answers in the original equation.

Quadratic Formula

The solutions of a quadratic equation $a x^{2}+b x+c=0$, $a \neq 0$, are given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

where \boldsymbol{a} is the coefficient of x^{2}, \boldsymbol{b} is the coefficient of x , and \boldsymbol{c} is the constant term of the quadratic equation.

The Discriminant

How can we determine the nature of the solutions of a quadratic equation?

The discriminant of a quadratic equation $a x^{2}+b x+c=0, a \neq 0$, is given by $\boldsymbol{b}^{2}-4 a c$.
(Note: This expression is equivalent to the radicand in the quadratic formula.)
\checkmark If $b^{2}-4 a c>0$, the equation has two distinct real solutions.
\checkmark If $b^{2}-4 a c=0$, the equation has one real solution
\checkmark If $b^{2}-4 a c<0$, the equation has no real solutions.

The solutions of a quadratic equation $a x^{2}+b x+c=0$, are the \mathbf{x}-intercepts of the graph of the equation. If the graph has no x-intercepts, then the equation has no real solutions.
Examples:
Two distinct real solutions:

One real solution:

No real solution:

Definition of Quadratic Function

A quadratic function is a function of the form \qquad

$$
\mathrm{f}(\mathrm{x})=a \mathrm{x}^{2}+b \mathrm{x}+c
$$

where a, b, and c are real numbers, $a \neq 0$.
The graph of a quadratic function resembles a
\qquad U-shaped curve and it is called a parabola. It will
\qquad have either an upward or a downward concavity.

$\mathrm{y}=a \mathrm{x}^{2}+b \mathrm{x}+c$ is frequently called the general form of a parabola.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Features of a Parabola (contd.)

Vertex: "Turning point" of the graph of the quadratic function.
\checkmark If concave up, vertex is the lowest or minimum point. \qquad
\checkmark If concave down, vertex is the highest or maximum point.

Axis of symmetry: Vertical line through the vertex; divides the parabola into two parts which are mirror images.

Vertex of a Parabola of the Form $f(x)=a x^{2}+b x+c$, $a \neq 0$.
\qquad
\checkmark x-coordinate:
The x -coordinate of the vertex is given by $\mathrm{x}=-\frac{b}{2 a}$.
\checkmark y-coordinate:
The y-coordinate of the vertex is given by $\mathrm{f}\left(-\frac{b}{2 a}\right)$.

Summary:

First, find the x-coordinate of the vertex by using
$\mathrm{x}=-\frac{b}{2 a}$.
Then, evaluate the quadratic function at this x-value to find the y-coordinate of the vertex.

Features of a Parabola (contd.)

X-intercept: The graph of a parabola may cross the x -axis once, or at two different points, or not at all.

If they exist, the x-intercepts of the parabola will occur when $\mathrm{y}=0$.
So, they are found by setting $a x^{2}+b x+c=0$ and solving for \mathbf{x}.
(Solve by factoring, if possible, or applying one of the various solving methods learned in Section 4.1.)

Features of a Parabola (contd.)

Y-intercept: The graph of a parabola crosses the y-axis exactly once.

The y-intercept is found by letting $x=0$ in $\mathrm{y}=a \mathrm{x}^{2}+b \mathrm{x}+c$, and solving for y . \qquad

Observe when $x=0$, we have

$$
\mathrm{y}=a(0)^{2}+b(0)+c=0
$$

So, in a parabola $\mathrm{y}=a \mathrm{x}^{2}+b \mathrm{x}+c$, the y -intercept is given by $y=c$; in ordered pair form $(0, c)$.

Graphing a Parabola of the Form $\mathrm{y}=a \mathrm{x}^{2}+\boldsymbol{b x}+\boldsymbol{c}, \boldsymbol{a} \neq \mathbf{0}$.

1. Determine the concavity:

If $a>0$, the parabola is concave up; if $a<0$, concave down
2. Find the vertex: $(-b / 2 a, f(-b / 2 a))$
\checkmark If concave up, the vertex is a minimum point
\checkmark If concave down, the vertex is a maximum point \qquad
3. Identify the y-intercept: $f(0)$ is given by the value of \boldsymbol{c}.
4. Find any x -intercepts: Let $\mathrm{y}=0$ and solve for x .
5. Plot the vertex, the y-intercept, and x-intercepts (if any), and connect them with a smooth U-shaped curve. Show the axis of symmetry. (lf needed, use the axis of symmetry to plot a symmetric point to the y-intercept to complete graph.)

Vertex Form of a Quadratic Function

$\mathrm{f}(\mathrm{x})=a(\mathrm{x}-h)^{2}+k, a \neq 0$, where (h, k) are the coordinates of the vertex.
$a>0$, concave up; $a<0$, concave down If $|a|<1$, graph will be wider than the graph of $y=x^{2}$. If $|a|>1$, graph will be narrower than the graph of $y=x^{2}$. \qquad
The axis of symmetry has the equation $x=h$.
The h-coordinate of the vertex represents a horizontal shift and it is the "opposite" of the value stated in
$\mathrm{f}(\mathrm{x})=a(\mathrm{x}-h)^{2}+k$.
The value of the k-coordinate of the vertex represents a vertical shift, and it will have the same sign as the one in the given function.

