Geometric Series:

Divergence Test:

Integral Test:

P series Test:

Comparison Test:

Limit Comparison

Test:
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divergent.
Suppose fis a continuous, positive, decreasing function on [1_._ 00) and let

a, = f(n). Then the series Z a, is convergent if and only if the
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improper integral J f(x)dx is convergent.
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The p-series Z— is convergent if p > 1 and divergent if p <1.
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Suppose that Z a and Z b;- are series with positive terms.
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If Z {'J” is convergent and d,, < {'J" for all n, then Z a, also converges.

If Z a, isdivergent and a, < b, for all n, then Z b, also diverges.

Suppose that Z a and Z bﬂ, are series with positive terms. If
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lim —% = ¢ where ¢ is a finite number and ¢ > 0, then either both
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series converge or both series diverge.



Alternating Series

Ratio Test:

Root Test:
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If the alternating series Z (=1)""b, satisfies
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2) limb, =0 then the series converges.
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Suppose that Z a is a series with positive terms. If llm ml =] <
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then the series converges. If im —"== L > 1 then the series diverges.
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Suppose that Z a is a series with positive terms. Iflim ¢/a, =L <1
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then the series converges. Iflim tla, = L>1 then the series diverges.
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If a series Z a, converges and Z ‘a”‘ converges, then Z a, is absolutely convergent.

If a series Z a, converges and Z ‘an‘ diverges, then Z a, is conditionally convergent.

MacLaurin Series:
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