Geometric Series:
$$\sum_{n=1}^{\infty} ar^{n-1} \text{ converges to } \frac{a}{1-r} \text{ if } |r| < 1.$$

Divergence Test: If
$$\lim_{n\to\infty} a_n$$
 does not exist or if $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Integral Test: Suppose
$$f$$
 is a continuous, positive, decreasing function on $[1, \infty)$ and let $a_n = f(n)$. Then the series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if the improper integral $\int\limits_{1}^{\infty} f(x) dx$ is convergent.

P series Test: The *p*-series
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 is convergent if $p > 1$ and divergent if $p \le 1$.

Limit Comparison Suppose that
$$\sum a_n$$
 and $\sum b_n$ are series with positive terms. If $\frac{a_n}{b_n} = c$ where c is a finite number and $c > 0$, then either both series converge or both series diverge.

<u>Alternating Series</u> If the alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ satisfies

<u>**Test**</u>: 1) $b_{n+1} \le b_n$ for all n and

2) $\lim_{n\to\infty} b_n = 0$ then the series converges.

Ratio Test: Suppose that $\sum a_n$ is a series with positive terms. If $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L < 1$

then the series converges. If $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L > 1$ then the series diverges.

Root Test: Suppose that $\sum a_n$ is a series with positive terms. If $\lim_{n\to\infty} \sqrt[n]{a_n} = L < 1$ then the series converges. If $\lim_{n\to\infty} \sqrt[n]{a_n} = L > 1$ then the series diverges.

If a series $\sum a_n$ converges and $\sum |a_n|$ converges, then $\sum a_n$ is **absolutely convergent.** If a series $\sum a_n$ converges and $\sum |a_n|$ diverges, then $\sum a_n$ is **conditionally convergent.**

<u>MacLaurin Series</u>: $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$

Taylor Series: $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

$$\tan^{-1} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$