Business Functions

MAC 2233

Homework

- Review of lines • p. 39 problems 5, 11, 17, 23, 29, 31
- Review of exponents • p. 303 problems 5-27 odd
- Review of logarithms • p. 320 problems 1-8, 13-33 odd

Suppose the monthly cost associated with manufacturing toasters is given by

- a) Identify the fixed costs.
- b) Find the costs involved with producing 100 items.
- c) Find the cost of producing the 100th item.

c) Find the cost of producing the $100^{\mbox{th}}$ item.

• So, it will cost _

Example

• Suppose that the weekly fixed cost associated with producing stuffed dinosaur toys is \$_____ and each unit produced costs \$_____. Develop a cost function to model this situation.

Solution

• The weekly cost function for producing stuffed dinosaurs is

Revenue Function

- Returns the amount of money obtained by selling *x* units of a product.

Demand function

- Provides a relationship between ______ ______ (price) and the number of items purchased by consumers (_____).
- *p* is _____ and *x* is the _____

Revenue function revisited

The *p* is the _____!
The *x* is the <u>variable</u> representing _____.

Example

Through data analysis, you have discovered that the demand equation for the sale of your ice cream treat is

Form the Revenue equation.

Suppose that you have found ______ will purchase one cupcake when you charge \$____ per cupcake but only ______ will purchase one when you charge \$_____per cupcake. Form your revenue equation.

7

Important note: • How do you know which number is *x* and which is *y* in your ordered pairs? • _____! • That's why we use _____! • Cost is a _____of _____ • Cost is a _____of _____ • Price is a _____of demand so *x* is the _____. • Price is a _____of demand so *x* is the _____. • I could reverse this dependency and then I would reverse the ordered pairs ... look at what you need for the problem.

Suppose you have discovered that the cost associated with manufacturing *x* coffee mugs is

and the revenue is

Form the profit function.

Example

Suppose you find that ______ will buy your printers at \$___ per printer but only _____ people will buy them at \$___ per printer. If it costs you \$__ per printer to manufacture the printers and you have a monthly overhead of \$_____, determine your monthly profit from manufacturing and selling *x* printers.

Solution

- To get to profit, we need to form _____
- _____ is easiest ...

_!

Develop the	funct	ion:
• Now we need		

Forming the	:
• So the <u>equation is</u>	

• Now we can form the profit equation!

- p. 26 problems 39, 41, 47 p. 60 problem 39

Break-even point

- If my profit is \$0, _
- . This is the break-even point.
- To find it, set
- Or, equivalently, set

Example

Suppose your profit equation for your teapot business is

where *x* is in ______ and *P* is in _____. Find and interpret the break-even point. How many units will you need to sell to make a profit of \$_____?

Find and interpret the break-even point.	1
• Find where the	
• Use the:	ૡ૾ૡૺૡૺ
• Discard! Producing will incur	—

• Your fixed costs associated with your picture frame business are \$_____ per month and your variable costs are \$__ per frame. If you sell frames for \$___ each, find the monthly breakeven point.

14

Average Business Functions

- The average _____ function gives the average _____ per ______.
- The average _____ function is

Supply and Demand

- We know how to figure out the _____ equation, which gives us a relationship between
- A ______ equation will give us a similar relationship between ______

Through data analysis, you find that the demand curve for your new turbo-powered stethoscopes is

and the supply curve is

where *x* is in thousands. Find the equilibrium price.

ୢ୶ୄ୵ୢ୶ୄ୵ୢ୶ୄ ૢ૾ૢૢ૽૽ૼ ৾৾ঀ৾

Solution Set them!	
୶ୢ୷୶ୄୢ୶	ୢ୶ୄ୵ୢ୶ୄ୵ୢ

Solution • Set them!	whether the
	<u> </u>

Homework

- p. 61 problems 45, 47, 49
- p. 322 problem 65

Example

Suppose you invest \$	in an account paying
8% interest	How much will you
have in if you	u do not withdraw any
funds?	
	<u>a</u>

Solution

• After _____, you would have about \$_____ in the account , assuming you never added more to your deposit... _____

Continuously Compounded Interest

The amount accumulated in an account bearing interest compounded *continuously* is

where P = r = r = r

t =

Example

Suppose you invest \$_____ in an account paying __% interest compounded continuously. How much will you have in _____ if you do not withdraw any funds?

Solution

• After 45 years, you would have about \$_____ in the account , assuming you never added more to your deposit. That's about \$_____

• Once the initial publicity surrounding the release of a new book is over, sales of the hardcover edition tend to ______. At the time publicity was discontinued, a certain book was experiencing sales of ______ copies per month. One month later, sales of the book had dropped to ______ copies per month. What will the sales be after one more month?

From *Calculus for Business, Economics, and the Social and Life Sciences* 10th ed. by Hoffmann & Bradley, 2007, p. 350, problem 22.

Solution

• So the equation is:

__•

- Now, we can answer the question:
- In one more month, we expect the sales

Homework

- p. 304 problems 43, 63, 69
- p. 321 problem 51
- p. 350 problems 21, 23

Regression A regression line is a line that provides
The, <i>r</i> , measures the of that relationship.
If, there is a perfect fit.

Regression
A regression curve is the curve that provides
 <i>R</i> ², measures
$0 \le R^2 \le 1$
If, there is a perfect fit.

From Applied Calculus, 4th ed. by Waner & Costenoble, 2007, p. 142, problem 94.

