

REGRESSION EQUATION

 $\hat{y} = b_0 + b_1 x$

where x is the independent variable or predictor variable

 \hat{y} is the predicted value

REGRESSION

- In our model, we have a slope (b_1) :
 - + The slope is built from the correlation and the standard deviations:

$$b_1 = r \frac{s_y}{s_x}$$

+ Our slope is always in units of y per unit of x.

REGRESSION

- In our model, we also have an intercept (b_0) .
- + The intercept is built from the means and the slope:

$$b_0 = y - b_1 x$$

Our intercept is always in units of y.

RESIDUALS

The difference between the observed value and its associated predicted value is called the residual.

To find the residuals, we always subtract the predicted value from the observed one: $residual = observed - predicted = y - \hat{y}$

LEAST SQUARES

The regression equation represents the line that fits the points best by minimizing the sum of the squares of the residuals.