
\qquad
\qquad

COMPARING TWO MEANS

\qquad

* We often want to know whether one group is \qquad different from another
* We can analyze this by comparing their means
* Is \bar{y}_{1} different from \bar{y}_{2} is equivalent to asking whether $\bar{y}_{1}-\bar{y}_{2}$ is different from zero.

COMPARING TWO MEANS

* The standard deviation of the difference \qquad between two sample means is

$$
S D\left(\bar{y}_{1}-\bar{y}_{2}\right)=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}
$$

We still don't know the true standard deviations of the two groups, so we need to estimate and use the standard error

$$
\operatorname{SE}\left(\bar{y}_{1}-\bar{y}_{2}\right)=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}
$$

COMPARING TWO MEANS

\qquad

* The sampling model is a Student's t.

The confidence interval we build is called a twosample t-interval (for the difference in means).
The corresponding hypothesis test is called a two sample hypothesis test.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

SAMPLING DISTRIBUTION FOR THE DIFFERENCE BETWEEN TWO MEANS

\qquad

When the conditions are met, the standardized sample difference between the means of two independent groups
\qquad

$$
t=\frac{\left(\bar{y}_{1}-\bar{y}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{S E\left(\bar{y}_{1}-\bar{y}_{2}\right)}
$$

can be modeled by a Student's t-model with a number of degrees of freedom found with a special formula.
We estimate the standard error with

$$
\operatorname{SE}\left(\bar{y}_{1}-\bar{y}_{2}\right)=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}
$$

ASSUMPTIONS AND CONDITIONS

x Independence Assumption (Each condition needs to be checked for both groups.):

+ Randomization Condition: Were the data collected with suitable randomization (representative random samples or a randomized experiment)?
$+10 \%$ Condition: We don't usually check this condition for differences of means. We will check it for means only if we have a very small population or an extremely large sample.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

ASSUMPTIONS AND CONDITIONS

\qquad

* Normal Population Assumption:
+ Nearly Normal Condition: This must be checked for both groups. A violation by either one violates the condition.
* Independent Groups Assumption: The two groups we are comparing must be independent of each other. (See Chapter 25 if the groups are not independent of one another...)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

TWO-SAMPLE T-INTERVAL

When the conditions are met, we are ready to find the confidence interval for the difference between means of two independent groups.
\qquad

The confidence interval is

$$
\left(\bar{y}_{1}-\bar{y}_{2}\right) \pm t_{d f}^{*} \times S E\left(\bar{y}_{1}-\bar{y}_{2}\right)
$$

where the standard error of the difference of the means is

$$
\operatorname{SE}\left(\bar{y}_{1}-\bar{y}_{2}\right)=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}
$$

The critical value depends on the particular confidence level, C, that you specify and on the number of degrees of freedom, which we get from the sample sizes and a special formula.
\qquad
\qquad
\qquad
\qquad
\qquad

DEGREES OF FREEDOM

* The special formula for the degrees of freedom \qquad for our t critical value is a bear:

$$
d f=\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{1}{n_{1}-1}\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}+\frac{1}{n_{2}-1}\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}
$$

Because of this, we will let technology calculate degrees of freedom for us!

TESTING THE DIFFERENCE BETWEEN TWO MEANS

* The hypothesis test we use is the two-sample t test for means.
* The conditions for the two-sample t-test for the difference between the means of two independent groups are the same as for the \qquad two-sample t-interval.
\qquad
\qquad
\qquad

TESTING THE DIFFERENCE BETWEEN TWO MEANS

\qquad

We test the hypothesis $\mathrm{H}_{0}: \mu_{1}-\mu_{2}=\Delta_{0}$, where the hypothesized difference, Δ_{0}, is almost always 0 , using the statistic
\qquad

$$
t=\frac{\left(\bar{y}_{1}-\bar{y}_{2}\right)-\Delta_{0}}{S E\left(\bar{y}_{1}-\bar{y}_{2}\right)}
$$

The standard error is

$$
S E\left(\bar{y}_{1}-\bar{y}_{2}\right)=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}
$$

When the conditions are met and the null hypothesis is true, this statistic can be closely modeled by a Student's t-model with a number of degrees of freedom given by a special formula. We use that model to obtain a P-value.

POOLED T-TEST

\times If we are willing to assume that the variances of \qquad two means are equal, we can pool the data from two groups to estimate the common variance and make the degrees of freedom formula much simpler.
We are still estimating the pooled standard deviation from the data, so we use Student's t model, and the test is called a pooled t-test.

