
\qquad
\qquad

$$
\begin{aligned}
& \text { THE STANDARD DEVIATION OF THE DIFFERENCE BETWEEN } \\
& \text { TWO PROPORTIONS } \\
& \times \text { The standard deviation of the difference } \\
& \text { between two sample proportions is } \\
& \qquad \operatorname{SD}\left(\hat{p}_{1}-\hat{p}_{2}\right)=\sqrt{\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}}
\end{aligned}
$$

\qquad

Thus, the standard error is

$$
S E\left(\hat{p}_{1}-\hat{p}_{2}\right)=\sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}}
$$

ASSUMPTIONS AND CONDITIONS

x Independence Assumptions:

+ Randomization Condition: The data in each group should be drawn independently and at random from a homogeneous population or generated by a randomized comparative experiment.
+ The 10\% Condition: If the data are sampled without \qquad replacement, the sample should not exceed 10\% of the population.
+ Independent Groups Assumption: The two groups we're comparing must be independent of each other.

ASSUMPTIONS AND CONDITIONS (CONT.)

- Sample Size Condition:
+ Each of the groups must be big enough...
+Success/Failure Condition: Both groups are big enough that at least 10 successes and at least 10 failures have been observed in each.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

THE SAMPLING DISTRIBUTION

\qquad
\times Provided that the sampled values are \qquad independent, the samples are independent, and the samples sizes are large enough, the sampling distribution of $\hat{p}_{1}-\hat{p}_{2}$ is modeled by a Normal model with

Mean:

$$
\mu=p_{1}-p_{2}
$$

Standard deviation:

$$
S D\left(\hat{p}_{1}-\hat{p}_{2}\right)=\sqrt{\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}}
$$

TWO-PROPORTION Z-INTERVAL

* When the conditions are met, we are ready to find the confidence interval for the difference of two proportions:
* The confidence interval is

$$
\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm z^{*} \times S E\left(\hat{p}_{1}-\hat{p}_{2}\right)
$$

where

$$
S E\left(\hat{p}_{1}-\hat{p}_{2}\right)=\sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}}
$$

The critical value z^{*} depends on the particular confidence level, C, that you specify.

TWO-PROPORTION Z-TEST

\times The conditions for the two-proportion z-test are the same as for the two-proportion z-interval.
\times We are testing the hypothesis $\mathrm{H}_{0}: p_{1}=p_{2}$.

* Because we hypothesize that the proportions are equal, we pool them to find

$$
\hat{p}_{\text {pooled }}=\frac{\text { Success }_{1}+\text { Success }_{2}}{n_{1}+n_{2}}
$$

TWO-PROPORTION Z-TEST

We use the pooled value to estimate the standard error:

$$
S E_{\text {pooled }}\left(\hat{p}_{1}-\hat{p}_{2}\right)=\sqrt{\frac{\hat{p}_{\text {pooled }} \hat{q}_{\text {pooled }}}{n_{1}}+\frac{\hat{p}_{\text {pooled }} \hat{q}_{\text {pooled }}}{n_{2}}}
$$

\qquad
\qquad
Now we find the test statistic:

$$
z=\frac{\hat{p}_{1}-\hat{p}_{2}}{S E_{\text {pooled }}\left(\hat{p}_{1}-\hat{p}_{2}\right)}
$$

When the conditions are met and the null hypothesis is true, this statistic follows the standard Normal model, so we can use that model to obtain a P-value.

