
\qquad
\qquad

STANDARD ERROR

\qquad

* Estimates the theoretical standard deviation of \qquad the sampling distribution for sample proportions based on a single sample:

$$
S E(\hat{p})=\sqrt{\frac{\hat{p} \hat{q}}{n}}
$$

A CONFIDENCE INTERVAL

\qquad

* By the 68-95-99.7\% Rule, we know \qquad
+ about 68% of all samples will have \hat{p} within 1 SE of p
\times So we are 68% sure p lies within one SE of \hat{p}
about 95% of all samples will have \hat{p} within 2 SEs of p \times So we are 95% sure p lies within two SEs of \hat{p}
about 99.7% of all samples will have \hat{p} within 3 SEs of p

So we are about 99.7% sure p lies within three SEs of \hat{p}
These are confidence intervals

CONFIDENCE INTERVALS

* An interval of values that is fairly certain to contain the true value of the population parameter of interest
\times The degree of confidence reflects the frequency of times that the confidence interval actually does contain the population parameter, assuming that the estimation process is repeated a large number of times

$$
\begin{array}{lllllllllllllllllll}
+1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 \\
\text { Sample }
\end{array}
$$

From Stats Modeling the World by Bock, Velleman, \& De Veaux, 2010, p. 443.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

MARGIN OF ERROR: CERTAINTY VS, PRECISION

$$
\begin{aligned}
& \text { We can claim, with } 95 \% \text { confidence, that the } \\
& \text { interval } \hat{p} \pm 2 S E(\hat{p}) \text { contains the true population } \\
& \text { proportion. } \\
& + \text { The extent of the interval on either side of } \hat{p} \text { is } \\
& \text { called the margin of error }(M E) \text {. } \\
& \text { In general, confidence intervals have the form } \\
& \text { estimate } \pm M E \text {. } \\
& \text { The more confident we want to be, the larger } \\
& \text { our ME needs to be. }
\end{aligned}
$$

CRITICAL VALUES

\qquad

* The ' 2 ' in $\hat{p} \pm 2 S E(\hat{p})$ (our 95\% confidence interval) came from the 68-95-99.7\% Rule. * Using a table or technology, we find that a more exact value for our 95% confidence interval is 1.96 instead of 2.

We call 1.96 the critical value and denote it z^{*}. For any confidence level, we can find the corresponding critical value.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

ONE-PROPORTION Z-INTERVAL

\times The confidence interval for the population proportion
p is

$$
\hat{p} \pm z^{*} \times S E(\hat{p})
$$

where

$$
S E(\hat{p})=\sqrt{\hat{p} \hat{q}} \frac{\hat{q}}{}
$$

The critical value, z^{*}, depends on the particular confidence level that you specify.

INTERPRETING THE INTERVAL

Don't Misstate What the Interval Means:
× Don't suggest that the parameter varies.

* Don't claim that other samples will agree with yours.
* Don't be certain about the parameter.
x Don't forget: It's the parameter (not the statistic).
* Don't claim to know too much.
- Do take responsibility (for the uncertainty).

CHOOSING YOUR SAMPLE SIZE

* In general, the sample size needed to produce a confidence interval with a given margin of error at a given confidence level is:

$$
n=\frac{\left(z^{*}\right)^{2} \hat{p} \hat{q}}{M E^{2}}
$$

where z^{*} is the critical value for your confidence level.
To be safe, round up the sample size you

[^0]\qquad
\qquad

[^0]: obtain.

