
\qquad

SAMPLING DISTRIBUTION

\qquad

* This is the distribution of probabilities we would obtain from every possible combination of samples

This distribution is theoretical whereas the distributions we looked at before were distributions of data

PROPORTIONS

\times The actual proportion for the population is p \qquad

* Our observed proportion for our sample is \hat{p}
\times We define $q=1-p$ and $\hat{q}=1-\hat{p}$
* The sampling distribution follows a normal $\sqrt{\underline{p q}}$ model with mean p and standard deviation $\sqrt{\frac{p q}{n}}$
* That is, the model that describes the distribution of sample proportions is

$$
N\left(p, \sqrt{\frac{p q}{n}}\right)
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

ASSUMPTIONS AND CONDITIONS

* There are two assumptions in the case of the \qquad model for the distribution of sample proportions:
The sampled values must be independent of each other.
The sample size, n, must be large enough.
$\times \quad$ Conditions we can check (p. 449)
Randomization, 10\% condition, Success/Failure

CENTRAL LIMIT THEOREM

* If n is sufficiently large, the sample means of random samples from a population with mean μ and finite standard deviation σ are approximately normally distributed and modeled by

$$
N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)
$$

ASSUMPTIONS AND CONDITIONS

x Independence of observations \qquad
\qquad
\qquad -10\% condition
Large enough sample size
\qquad

* Sufficiently large sample size
* We can check:
\qquad
\qquad
\qquad

CAUTION
\times Read "What can go wrong?" on p. 462
+ Don't confuse the sampling distribution with the
distribution of the sample
+ Beware of observations that are not independent
+ Watch out for small samples from skewed
populations

\qquad

