

SAMPLING DISTRIBUTION

- This is the distribution of probabilities we would obtain from every possible combination of samples
 - + This distribution is theoretical whereas the distributions we looked at before were distributions of data

PROPORTIONS

- × The actual proportion for the population is p
- ${\bf x}$ Our observed proportion for our sample is \hat{p}
- ***** We define q = 1 p and $\hat{q} = 1 \hat{p}$
- × The sampling distribution follows a normal model with mean p and standard deviation $\sqrt{\frac{pq}{n}}$

 $N\left(p,\sqrt{\frac{pq}{n}}\right)$

That is, the model that describes the distribution of sample proportions is

ASSUMPTIONS AND CONDITIONS

- There are two assumptions in the case of the model for the distribution of sample proportions:
 - 1. The sampled values must be independent of each other.
 - The sample size, *n*, must be large enough.
 - Conditions we can check (p. 449)
 - Randomization, 10% condition, Success/Failure

CENTRAL LIMIT THEOREM

 If n is sufficiently large, the sample means of random samples from a population with mean μ and finite standard deviation σ are approximately normally distributed and modeled by

$$N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

ASSUMPTIONS AND CONDITIONS

- × Independence of observations
- × Sufficiently large sample size
- × We can check:
 - + Randomization
 - + 10% condition
 - Large enough sample size

CAUTION

- Read "What can go wrong?" on p. 462
 + Don't confuse the sampling distribution with the distribution of the sample
 - + Beware of observations that are not independent
 - + Watch out for small samples from skewed populations