
Networked Systems Survivability
CERT® Coordination Center
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

© 2002 by Carnegie Mellon University
® CERT, CERT Coordination Center and Carnegie Mellon are registered in the
U.S. Patent and Trademark Office

Information Security for Technical Staff

Module 6:

Cryptography

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 2

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 2

Objectives
Define the terms associated with cryptography

Identify benefits and risks associated with
cryptography

Describe symmetric and asymmetric cryptosystems

Define steganography and describe the threats

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 3

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 3

Overview -1
History of cryptography

Basic cryptography terms

General types of encryption
• Symmetric, asymmetric

Common symmetric encryption methods
• DES, 2DES, 3DES, IDEA, AES

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 4

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 4

Overview -2
Common asymmetric encryption algorithms
• RSA, El Gamal, Diffie-Hellman Key Exchange

Common hash functions
• MD-5, SHA-1

Digital signatures and certificates

Common attacks

Steganography

Review and exercise

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 5

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 5

There are so few who can carry a letter of
any substance without lightening the weight by perusal.

--Cicero to Atticus, 61 BC

Given the public nature of the networks that carry a vast majority of the traffic of the Internet, and given
the sensitive nature of some of the information that we must pass, it is imperative that we consider ways
to conceal the traffic we will be passing. Cryptography can do this task quite well for us if we implement
it correctly and manage it properly.

This module will describe some of the basics of cryptography and give you a baseline understanding of
common methods of protecting information through encryption.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 6

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 6

History of Cryptography -1
3000 BC – Egyptian hieroglyphics

500 BC – Spartan scytale

50 BC – Caesar cipher
• Simple alphabetic substitution
• Each letter replaced by the letter

three to the right

ABCDEFGHIJKLMNOPQRSTUVWXYZ

DEFGHIJLKMNOPQRSTUVWXYZABC

∴ ORQJIHOORZ is LONGFELLOW

The art and science of cryptography has a long and distinguished heritage. Not long after people started
writing, they wanted a way to keep their information secret from others. Ancient Egyptians employed
hieroglyphics to conceal writings from unintended recipients as early as 3000 B.C. Another of the oldest
known examples is the Spartan scytale. Over 2500 years ago, Spartan government sent secret messages
to its generals in the following clever way. Sender and recipient each had a cylinder (called a scytale) of
exactly the same radius. The sender wound a narrow ribbon of parchment around his cylinder, and then
wrote on it lengthwise. After the ribbon is unwound, only a person who had a cylinder of exactly the same
circumference could read the writing.

Julius Caesar created one of the first encryption systems in Rome – later referred to as the Caesar Cipher.
Caesar’s cipher was a simple substitution cipher – where each letter in the message was replaced with the
letter three to the right of that letter. Therefore, ‘A’ would be replaced with ‘D,’ ‘M’ with ‘P,’ and ‘X’
with ‘A.’ This simple alphabetic substitution scheme can be used effectively by using an alphabet shifted
from 2 to 25 spaces. There is even a simple alphabetic substitution program built into UNIX known as
ROT13, which uses an alphabet shifted 13 to the right. While not an effective encryption scheme for data
security, it does hide messages from offensive language filters applied to many newsgroups, or can also
be used to hide answers to puzzles or riddles.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 7

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 7

History of Cryptography -2
Thomas Jefferson’s ‘stack of disks’
• 26 disks with alphabet on each

(in different order) – rotated to
encrypt the message

World War II – Axis Powers Encryption
• German Enigma
• Japanese Purple Machine

The interest in strong cryptography, especially for those not in the military or other governmental bodies,
was very limited for many centuries. Thomas Jefferson worked on an encryption scheme whereby a stack
of 26 disks, each with the alphabet in a different order, would be rotated based on a certain ‘key’ – which
would be changed for each message.

Jefferson’s device did not come into wide use until it was reinvented by Brazilian Commandant Etienne
Bazeries over a century later, and became known as the "Bazeries cylinder". A Bazeries cylinder
consisted of a set of roughly 20 to 30 numbered disks, with a different cipher alphabet on the edge of each
disk, and a hole in the center of the disks to allow them to be stacked on an axle. The disks are not fixed
in place – they can be removed and can be mounted on the axle in different orders. The order of the disks
can be considered the cipher key for the Bazeries cylinder, with both the sender and the receiver arranging
the disks in the same predefined order.

The Enigma cipher is most well known for its contributions to World War II on the Germans' side. They
developed what came to be known as The Enigma Machine. The machine was based on a system of three
rotors that substituted cipher text letters for plain text letters. The rotors would spin in conjunction with
each other, thus performing varying substitutions much like the Caeser Shift. When a letter was typed on
the keyboard of the machine, it was first sent through the first rotor, which would shift the letter according
to its present setting. The new letter would then pass through the second rotor, where it would be replaced
by a substitution according to the present setting of the second rotor. This new letter would in turn pass
through the third rotor, again being substituted accordingly. Next, this new letter would be bounced off of
a reflector, and back through the three rotors in reverse order. The trick that made Enigma so powerful for
its time though, was the spinning of the rotors.

As the plain text letter passed through the first rotor, the first rotor would rotate one position. The other
two rotors would remain stationary until the first rotor had rotated 26 times (the number of letters in the
alphabet and therefore, one full rotation). Then the second rotor would rotate one position. After the
second rotor had rotated 26 times (26X26 letters, since the first rotor has to rotate 26 times for every time
the second rotor rotates), the third rotor would rotate one position. The cycle would continue like this for
the entire length of the message. The result was a shifting shift. In other words, an s could be encoded as a
b in the first part of the message, and then as an m later in the message. This principle of the shifting
rotors allowed for 26X26X26 = 17576 possible positions of the rotors. In order for the recipient to
decode the message, they would need to know the initial settings of the rotors, and then put the cipher text

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 8

through the machine to find the plain text. The Germans devised a system by which all of the recipients
would set their rotors to predetermined settings according to the date. Each clerk had a book detailing the
settings for each day. This presented a major weakness in the system though. Obviously, if anyone could
figure out what the settings of the rotors were for a particular day, they would be able to decode that day's
messages, assuming they had an Enigma Machine themselves.

Purple was the U.S. codename for a Japanese cipher machine used during World War II. The U.S. called
it Purple because the first Japanese code, called orange had increased in difficulty and went on to the
color red until the most difficult, the Purple, was reached. This was the code constructed on a machine
unlike other previous codes which consisted of pen and paper. The Purple machine was made up of two
electric typewriters, separated by a plugboard and a box of cipher wheels. The enciphered message was
typed on one of the typewriters and the ciphered text was printed out of the other typewriter.

The enciphering process starts on one of the typewriters. Each key on the typewriter's keyboard connects
to a wire which links to a switchboard. Thus, it has twenty-six holes lettered A to Z and a wired plug in
each of them. As electric impulses are received from pressing the typewriter keys they are re-routed and
sent on to different destinations by rearranging the plugs in the plugboard. So if an A plug is placed in
the hole marked D, the letter A pressed on the typewriter will be changed into a D by the plugboard. This
is a simple substitution, but the Japanese had a plan to switch their plugs around each day and confused
the enemy by constantly changing the plugboard's alphabet. The letter A already changed into a D by the
plugboard travels along the D wire into the box of cipher wheels. Each wheel represents a different letter
and each disc has twenty-six letters of the alphabet in scrambled order written around the edges. The
original A is now a D, after the plugboard travels to the wheel standing in the D position. It can represent
another letter, for example the letter S. If S is represented, then S will be printed by the second
typewriter. After S has been typed, the cogs (which are attached to the wheels) turn a certain number of
spaces and the next time A is typed it may come out as S, T, or M. This results in a word being coded in
many thousands of ways. It is hard to do a frequency count on the Purple machine since it is constructed
to almost never to repeat itself. With Purple in the American hands, they could decipher the Japanese
diplomatic messages concerning the Japanese attack on Pearl Harbor. This Purple machine gave the only
clue to Japanese intentions during the war.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 9

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 8

Basic Cryptography Terms
Cryptography has a language unto itself

Important to understand many terms to understand
the concepts

• Plaintext

• Cipher

• Ciphertext

• Algorithms

• Cryptosystem
• Keys

• Hashing

A list of the terms that will be defined.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 10

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 9

Plaintext
The original, intelligible text of the ‘message’

Defined as P

Plaintext, quite simply, is what you want to encrypt. It is the war plans. It is your prize-winning
recipe for watermelon cookies. It is your confession that you shot J.R. It is anything to which
you don’t want the world to have access. And it is the information that will be put through the
encryption process and will therefore be protected.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 11

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 10

Cipher -1

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 12

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 11

Cipher -2
Predefined method which either transforms:
• An intelligible message into an unintelligible message
• An unintelligible message into an intelligible message

Common methods: mathematical operations,
alphabetic or numeric substitution, etc.

The function is represented as E when encrypting and
D when decrypting

Cryptography is impossible without a good method of changing your plaintext into unintelligible text.
The cipher is the process for this transformation. It can be as simple as the steps taken in the Caesar
Cipher – substitute each letter with the letter three spaces to the right. Or, in the age of digital computers,
it can be a very complex set of mathematical operations that take a very detailed understanding of prime
numbers and factoring to comprehend. But either way, the cipher is the tool that operates on your
plaintext to make it unintelligible. In computer systems, it is a mathematical function operating on the
bits of data. Often in the past the cipher itself had to be kept secret. This is called a ‘restricted
algorithm,’ and is still used occasionally today. The security of the encrypted text is dependant solely on
the secrecy of the cipher. It is virtually impossible to use a restricted algorithm in a large group, or a
group that changes even occasionally – as this would require constant changing of the cipher itself. So
most of today’s algorithms are commonly known and survive the test of public scrutiny.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 13

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 12

Types of Ciphers
Block cipher
• Operates on a block of the message at a time
• Typical block length is 64 bits

Stream cipher
• Operates on each character in the text individually
• Slower but (potentially) more difficult to crack than a block

cipher

There are two main types of ciphers – block ciphers and stream ciphers. These operate on the plaintext in
two distinct ways.

Block cipher – operates on a set number of bits at the same time. For example, if you have a message that
is 1024 bits long, and your block size is 64 bits, the cipher will take the first 64 bits of data and operate on
them. Once that block is finished, it moves on to the next 64-bit block and operates on it, and so on until
it has operated on all 1024 bits in the plaintext. Likewise, to decrypt the data, the cipher will operate on
64 bit blocks, turning the encrypted text back to plaintext and then move on to the next 64-bit block.

Stream cipher – operates on one byte at a time. Stream ciphers do all of their calculations and operations
on every single byte. In our 1024 byte example message, the cipher would have to do the encryption
operations 1024 times – once for each plaintext bit.

Block ciphers are generally faster than stream ciphers, as they can operate on larger numbers of bits, and
do a smaller number of operations on plaintext than the stream cipher would.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 14

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 13

Ciphertext
The output of the cipher

Unintelligible, encrypted text

Ciphertext, when put through the cipher in reverse,
delivers the original plaintext

Defined as C

∴ E(P)=C and D(C)=P Demo – Ciphertext

Once you’ve run your plaintext message through your cipher, the output you get is called ciphertext.
Ciphertext is unintelligible. For example, taking the string “I shot J.R.” and running it through a strong
encryption cipher, the output you get is analogous to “#@^<<:*&*&”. As you can tell, it is not easily
read by humans, and not easily decrypted without knowing the cipher and some other information (called
a key). Your data is then safe from the prying eyes – whether it is stored on your computer or
transmitted across the network or Internet.

Ciphertext stays ciphertext until decrypted by the decryption algorithm.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 15

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 14

Algorithm
A mathematical operation
• Performed on the plaintext for encryption
• Performed on the ciphertext for decryption

Currently, most are publicly known
• Therefore, security of the ciphertext is not dependant on the

algorithm itself

Common algorithms: DES, IDEA, Blowfish

An algorithm is a detailed sequence of actions performed to accomplish some task. In cryptography,
algorithms normally refer to the actual set of mathematical operations that the cipher performs on the
plaintext to encrypt, and the ciphertext to decrypt. People will sometimes use cipher and algorithm
interchangeably.

There are many common algorithms now that have stood the test of public scrutiny. They include: The
Digital Encryption Standard (DES), the International Digital Encryption Algorithm (IDEA), the
Advanced Encryption Standard (AES), Blowfish, Twofish, CAST, RSA, and many more. Some of these
will be discussed later in this module.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 16

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 15

Keys (a.k.a. Cryptovariables)

An input to the algorithm which ‘scrambles’ the
plaintext into the ciphertext
• Different keys produce different ciphertext from the same

plaintext and algorithm

All possible keys for an algorithm are called the
keyspace

Denoted as K

∴ EK(P)=C and DK(C)=P Demo – Key generation

Since the algorithms today are well known, and perform the same basic operations on our plaintext, there
must be a way for us to uniquely encrypt our plaintext that is not dependent on our encryption algorithm
alone. Keys, which are more accurately called ‘cryptovariables,’ are the answer to this problem. For
today’s algorithms, this key is usually a very large series of bits – ranging in size from 56 bits for the Data
Encryption Standard to 3092 bits (and possibly more) for RSA. The key and the plaintext are the inputs
into the cipher, and the key is used to operate on each of the blocks in a block cipher and on each bit in a
stream cipher.

Some encryption schemes use the same (secret) key to encrypt and decrypt the message. Public key
encryption uses two different keys – a public key which is known by everyone, and a private key which
must be kept secret.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 17

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 16

About Keys

Since the majority of encryption algorithms are
commonly known, the key is the only thing that keeps

your encrypted data and traffic safe!!!

Keeping your keys safe is a requirement for strong security. You have the ability to control this.

Keys that are generated based on the programming of the algorithm or other non-random factors will be
easier to guess and therefore are considered weak.

If an attacker can predict the key or even narrow down the number of keys they must try, the
cryptosystem can be broken much more easily. Another difficulty of strong key creation is this: random
numbers are hard to create in a computer – they are better produced in nature. On the computer,
encryption software has to be satisfied with a pseudo-random number generator (PRNG) to produce
‘random’ numbers. This starts with a 'seed' number that is as random as it can be made (usually based on
events going on around the computer – movement of the mouse, speed of typing keys on the keyboard,
etc.). The PRNG then expands the seed into a longer, random-looking stream of binary bits. Hence the
name pseudo – it’s not completely random, but it appears to be random. Since the seed (or seeds) feed the
PRNG – which in turn feeds the key generation algorithm, they need to be quite random. If they are not,
an attacker can guess (or narrow down) which pseudo-random streams of bits would have been used in
making the session key – and that’s not a good thing.

The security of SSL version (which will be covered in more detail in Module 12 – Securing Remote
Access) depends on the unpredictability of the session key. In it’s first release in 1995, it turned out that
Netscape's SSL 1.0 seed depended on three relatively non-random items: the time of day, the process ID,
and the parent process ID. All three can be found or guessed (rather accurately). A UNIX user using the
Netscape browser could get the process ID and the parent process ID simply by using a command that
lists the process IDs of all processes on the system. The other missing information is then the time of day
when the session key was generated. And this is not terribly difficult to guess if the attacker has some
transmission information about the encrypted session. Packet capturing programs (like sniffer or
tcpdump) will record the exact time they see each packet go by. That means an attacker can guess the
time to within a second. And that in turn means the attacker would only need to try a million seeds in
order to get the microseconds input to the PRNG. Testing all one million possibilities takes only a few
seconds on a reasonably equipped PC.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 18

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 17

Large Numbers
A 128-bit number has 2128

possible values.
• Just how big is that?
• The total lifetime of the universe is about 261 seconds,

assuming a closed universe
• 2128 = 3.4x1038 in decimal

Some other big numbers:
• Number of atoms in the earth 2170

• Number of atoms in the sun 2190

• Number of atoms in the universe 2265

Just how big are cryptographic keys? To crack the RSA algorithm (which will be discussed later), one
must factor large prime numbers. The difficulty of factoring a large number of a given size is known, and
the time it would take any given computer to do that can be estimated.

Bits in the public key Mips-years needed to factor

512 30,000

2048 3x1020

A million instructions per second for a year = 1 mips-year. And to give the public-key sizes a familiar
scale, 2048 bits is about 616 decimal digits (10616). A 1 Ghz Pentium 4 is approximately a 1000 mips
machine. This means that it would take such a system 30 years to factor a 512-bit key, and 3 x 1017 years
to factor a 2048 bit key. Another example is Pittsburgh Supercomputer Center’s new TeraScale system
of 64 interconnected Compaq ES40 Alpha servers, which can perform 342000mips. At this rate, it would
take this system about 46 minutes to factor the 512-bit key, but would still take 8.7 x 1010 years to factor
the 2048-bit key.

So, large keys (when used in conjunction with scrutinized algorithms) are safe against today’s computing
power. However, the largest key must be protected properly (via passwords, access controls, etc) or it is
useless. Therefore, key management is the challenge to making your encrypted data survivable.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 19

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 18

Cryptosystem
A combination of:

A cryptosystem is a set of transformations from a message space to a ciphertext space. A cryptosystem is
composed of the combination of the algorithms used for encryption/decryption, and all of the possible
plaintexts, ciphertexts, and keys. The strength of a cryptosystem depends primarily on two things – the
strength of the algorithm and the number of possible keys. One can represent a cryptosystem as follows:

E(M,K)=C

D(C,K)=D[E(M,K),K]=M

where M = Plaintext, C = Ciphertext, E = the encryption transformation, D = the decryption
transformation, and K = the cryptovariable or key.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 20

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 19

Types of Encryption

Symmetric
Asymmetric

We will review two main types of encryption – symmetric encryption (aka secret key), and asymmetric
encryption (aka public/private key encryption).

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 21

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 20

Symmetric Encryption
Encryption and decryption are done using the same key

Keys must be kept secret to be secure
• Commonly referred to as a ‘secret key’ or shared secret

Symmetric encryption algorithms work on one simple principle – the same exact key that is used to
encrypt the plaintext is used to decrypt the ciphertext. For example, in a DES implementation, the same
key must be used on the sender side to encrypt the message as will be used on the receiver’s side to
decrypt the message. Because this type of encryption scheme requires that the key be kept completely
secret, this type of key is often referred to as a ‘secret key.’

The implementation of secret key algorithms makes for some very difficult obstacles. For example, how
can two individuals who have no means of sharing their secret key (i.e. geographically separated) agree
on a secret key? They cannot use an insecure communications link, as that would allow eavesdroppers to
learn the secret key while it is being shared and thereby use it to decrypt the messages. Could they use a
trusted courier? That will be more secure, but introduces a great deal of wait-time. Now let’s imagine
that your organization needs to communicate securely with thousands – or hundreds of thousands – of
people or other organizations. What are the issues involved in managing a large number of secret keys?
Storage, destruction, renewing, etc., are all very difficult problems.

Strict symmetric key algorithms work well for some purposes, but have a number of logistical issues that
prevent flexible use, and present scalability issues.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 22

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 21

Symmetric Encryption

In a symmetric encryption scheme, the sender encrypts the message into ciphertext using a secret key.
The message is then sent to the receiver, who must have the identical secret key. The receiver uses this
secret key to decrypt the ciphertext back to the original message.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 23

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 22

Asymmetric Encryption
Encryption and decryption are done with separate
keys
• Encryption is usually done with a public key
• Decryption done with the corresponding private key

Public key is easily available; private key must be
kept secret

In the 1970s, a few organizations began developing a new type of encryption scheme – which deviated
totally from the old method of symmetric encryption. It was theorized, and later proven, that a message
could be encrypted with one key and decrypted with another. Better yet – having one of these two keys
did not provide a means for mathematically computing the other key. Therefore, Alice could encrypt a
plaintext with one key and send it to Bob – who would use a completely different key to decrypt it. This
two key encryption algorithm idea became the foundation for public key cryptography. Since the keys
were not mathematically related, Alice could publish her ‘public key’ out to the Internet or anywhere else
she wanted. Bob, or anyone else, could use Alice’s public key to encrypt a message for her. And only
Alice could decrypt it – with her ‘private key.’ This could be used to address many of the problems of
symmetric encryption algorithms. Alice and Bob don’t have to meet in private to agree on a secret key if
they have to send encrypted information back and forth. And the organization that needs to connect
securely to hundreds of thousands of people doesn’t have to manage hundreds of thousands of keys now –
they can simply publish their public key and allow their customers or partners access to that key, with
which they can initiate a secure communications channel.

Asymmetric cryptosystems require the same care, however, that symmetric systems do when it comes to
the private key. As the key in a symmetric system must be kept completely secret, so must be the private
key in asymmetric cryptosystems. Imagine that Alice believes she is encrypting something that only Bob
can read because she has encrypted it with Bob’s public key, but Eve has somehow stolen Bob’s private
key. Eve would then be able to read all of those messages.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 24

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 23

Asymmetric Encryption

The plaintext is encrypted with a public key. Not just any public key, but the public key of the person to
whom the message is destined. Because of the asymmetric nature of the encryption algorithm, only the
person with the corresponding private key (of which there is only one) can decrypt the message. In fact,
the person who encrypted the message cannot decrypt it, as they will not have the private key of the
receiver!

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 25

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 24

Symmetric vs. Asymmetric
Asymmetric
• Fastest implementation of RSA (asymmetric) can encrypt

kilobits/sec
- 2048-bit key

Symmetric
• Fastest implementation of DES (symmetric) can encrypt

megabits/sec
- 56-bit key

Naturally, there are some trade-offs when comparing symmetric and asymmetric cryptosystems. The
only major advantage of symmetric over asymmetric cryptosystems is in the speed of processing.

Why is this so? The primary reason is the size of the key for the average symmetric implementation
versus the size of the average asymmetric key. Symmetric keys are significantly smaller. For example, a
DES key is 56 bits, while most public and private keys are 1024 bits or more. Today, it is possible to get
a 4096-bit public key. Remember, the entire key is used in the operation of the cipher on the plaintext.
Therefore, large (asymmetric) key systems simply must take more time and processing power to encipher
and decipher than smaller (symmetric) ones.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 26

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 25

The Hybrid Model
Very common practice: hybrid symmetric and
asymmetric
• Asymmetric encryption is used to share a secret key, which is

then used for symmetric encryption

Advantages
• Speed of symmetric, flexibility of asymmetric

And currently, as speed is always an issue, a ‘hybrid’ system is very common. The asymmetric
cryptosystem is used to share a symmetric (secret) key, which is then used in a symmetric encryption
method. This is the best of both worlds – the ease of management and flexibility of an asymmetric
cryptosystem and the speed of a symmetric cryptosystem.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 27

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 26

Common Algorithms
Common symmetric algorithms
• DES (block, old US standard)
• AES (block, new US standard)
• IDEA (block, PGP and others)
• RC4 (stream, SSL)

Common asymmetric algorithms
• RSA (block, DSS)
• Diffie-Hellman Key Exchange
• ElGamal (block; DSA in DSS)

We will discuss some of these algorithms in detail.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 28

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 27

DES
Data Encryption Standard

Released in 1975

1977: Federal Information Processing Standard 46-1

Block cipher – 64 bit blocks and 56 bit key
• Small keyspace was broken by brute force (1998)

The relatively small keyspace (all possible key values) as specified for DES, has been a concern for many
years. It was first broken by brute force in 1998, and has since been broken in less than 24 hours through
globally distributed computing strategies1. Because of this, other DES implementations have been
utilized as well as other algorithms.

An excerpt from Federal Information Processing Standards Publication 46-2, which re-certified DES as
the standard in 1993:

The Data Encryption Standard (DES) specifies a Federal Information Processing Standards (FIPS)
approved cryptographic algorithm as required by FIPS 140-1. This publication provides a complete
description of a mathematical algorithm for encrypting (enciphering) and decrypting (deciphering) binary
coded information. The algorithm described in this standard specifies both enciphering and deciphering
operations which are based on a binary number called a key.

A key consists of 64 binary digits ("0"s or "1"s) of which 56 bits are randomly generated and used
directly by the algorithm. The other 8 bits, which are not used by the algorithm, are used for error
detection. The 8 error detecting bits are set to make the parity of each 8-bit byte of the key odd, i.e., there
is an odd number of "1"s in each 8-bit byte. Authorized users of encrypted computer data must have the
key that was used to encipher the data in order to decrypt it. The encryption algorithm specified in this
standard is commonly known among those using the standard. The unique key chosen for use in a
particular application makes the results of encrypting data using the algorithm unique. Selection of a
different key causes the cipher that is produced for any given set of inputs to be different. The
cryptographic security of the data depends on the security provided for the key used to encipher and
decipher the data.

Data can be recovered from cipher only by using exactly the same key used to encipher it. Unauthorized
recipients of the cipher who know the algorithm but do not have the correct key cannot derive the original
data algorithmically. However, anyone who does have the key and the algorithm can easily decipher the
cipher and obtain the original data. A standard algorithm based on a secure key thus provides a basis for
exchanging encrypted computer data by issuing the key used to encipher it to those authorized to have the
data.

1 http://www.distributed.net/des/

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 29

Data that is considered sensitive by the responsible authority, data that has a high value, or data that
represents a high value should be cryptographically protected if it is vulnerable to unauthorized disclosure
or undetected modification during transmission or while in storage. A risk analysis should be performed
under the direction of a responsible authority to determine potential threats. The costs of providing
cryptographic protection using this standard, as well as alternative methods of providing this protection
and their respective costs, should be projected. A responsible authority then should make a decision,
based on these analyses, whether or not to use cryptographic protection and this standard.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 30

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 28

Double DES

So DES has been a worry for quite some time for its potential keyspace problem. Therefore, it became
necessary as computing power increased to consider a replacement to DES with a larger keyspace. The
idea of using DES with two distinct enciphering operations and two different 56-bit keys was considered,
as this would yield a theoretical 112-bit keyspace.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 31

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 29

Meet-in-the-Middle Attack
A brute force attack used to defeat Double DES

Works by accomplishing the following:
• Storing every possible value for EK1(P)
• Performing DK2(P) and comparing to those values to the

values stored in memory
• If DK2(C)=EK1(P), then you likely have K1, K2

• The effective keyspace is 2*256, not 256*2

But it’s not always that easy. For an attacker to defeat this algorithm, they need only a known plaintext
and the related ciphertext. Cryptanalysts proved that, through some long mathematical proofs, if someone
could take a known plaintext and encrypt it with every possible 56-bit key and store that into memory (a
task which is not yet easily accomplished), and subsequently take the known ciphertext from that
plaintext and decrypt it with every possible key. If the decrypted text matches any of the text in memory,
then there is a very good chance that the keys used for the operation are the correct keys. This is called a
‘meet in the middle’ attack.

So what does this do to the effective keyspace? Instead of the virtual 112-bit key, we are now left with a
57-bit keyspace – as it should only take twice the number of operations to brute force this cryptosystem
than it would to do the same to the 56-bit DES cryptosystem.

So a larger keyspace does not always give stronger cryptosystems.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 32

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 30

Triple DES

The newest implementation of DES involves three separate cipher operations – and has become known as
Triple DES (or 3DES). Triple DES is not susceptible to the meet in the middle attack to which Double
DES falls victim. This results from using an additional cipher process. Triple DES uses two or three
different DES (56-bit) keys. In a two-key system, the plaintext is encrypted with the first key, then
‘decrypted’ with the second key, and encrypted again with the first key. For a three-key Triple DES
system, the plaintext is encrypted with the first, decrypted with the second key, and encrypted with the
third key.

It is important to understand what ‘decrypting’ with the second key in a Triple DES cryptosystem means.
For a symmetric cryptosystem, the exact same key is needed to encrypt the plaintext as is required to
decrypt the ciphertext to produce the plaintext again. In Triple DES, the ciphertext from the first
encryption operation (encrypting with the first key) is run through the decryption algorithm with the
second key. What is the result? Certainly not the plaintext – because, if the two keys are different, it is
not possible to get the plaintext from 2 different keys. So what do we get? Junk. But that’s not a bad
thing. We then run that junk through the DES encryption algorithm again with the first key (or the third
key – depending on our implementation) – and we get our final ciphertext. So the ‘decryption’ step in a
Triple DES implementation does not produce the plaintext – only an interim ciphertext that will be further
encrypted by the third enciphering process.

And the best part of Triple DES is the fact that it is not a ‘group.’ If Triple DES were a group, it would
mean that, when we run the plaintext through the three enciphering processes and get our subsequent
ciphertext out, we would have ciphertext that could be produced by another single key in a DES
implementation. In other words, we could use a brute-force DES attack (with only 56-bit keys) and
produce the plaintext with a single key. The fact that Triple DES is not a group means that the ciphertext
it produces cannot be cracked this way – which further strengthens the algorithm.

The effective keyspace of a Triple DES implementation with two keys is 2112, while with three keys it is
2168.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 33

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 31

Advanced Encryption Standard
(AES) -1
Lengthy process to replace DES as standard

Started in Jan 97 – completed in Oct 00
• 15 total algorithms submitted

Rijndael selected as preferred algorithm
• Other finalists: Twofish, MARS, Serpent, RC6

Rijndael is pronouonced ‘rhine doll.’

From the draft of FIPS 140-2: SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC

MODULES, which identified the new encryption standard for the US Government:

1. Name of Standard. Advanced Encryption Standard (AES) (FIPS PUB ZZZ).

2. Category of Standard. Computer Security Standard, Cryptography.

3. Explanation. The Advanced Encryption Standard (AES) specifies a FIPS-approved cryptographic
algorithm that can be used to protect electronic data. The AES algorithm is a symmetric block cipher
that can encrypt (encipher) and decrypt (decipher) information. Encryption converts data to an
unintelligible form called ciphertext; decrypting the ciphertext converts the data back into its original
form, called plaintext. The AES algorithm is capable of using cryptographic keys of 128, 192, and
256 bits to encrypt and decrypt data in blocks of 128 bits.

4. Approving Authority. Secretary of Commerce.

5. Maintenance Agency. Department of Commerce, National Institute of Standards and Technology,
Information Technology Laboratory (ITL).

6. Applicability. This standard may be used by Federal departments and agencies when the following
conditions apply:

1. An authorized official or manager responsible for data security or the security of any computer
system decides that cryptographic protection is required; and
2. The data is not classified according to the National Security Act of 1947, as amended, or the
Atomic Energy Act of 1954, as amended. Federal agencies or departments that use cryptographic
devices for protecting data classified according to either of these acts can use those devices for
protecting sensitive data in lieu of this standard.

Other FIPS-approved cryptographic algorithms may be used in addition to, or in lieu of, this standard
when implemented in accordance with FIPS 140-2, Security Requirements for Cryptographic Modules.
In addition, this standard may be adopted and used by non-Federal Government organizations. Such use is
encouraged when it provides the desired security for commercial and private organizations.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 34

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 32

AES -2
Rijndael properties
• Symmetric algorithm
• Variable key and block length

- 128, 192, or 256 bits for each
- 9 total block and key length combinations

This standard specifies the Rijndael algorithm, a symmetric block cipher that can process data blocks of
128 bits, using cipher keys with lengths of 128, 192, and 256 bits. While the Rijndael algorithm is
capable of variable block lengths, this is not currently being included in the FIPS implementation.
Rijndael was designed to handle additional block sizes and key lengths, however they are not adopted in
this standard. The algorithm may be used with the three different key lengths indicated above, and
therefore these different “flavors” may be referred to as “AES-128”, “AES-192”, and “AES-256.”

http://csrc.nist.gov/encryption/aes/

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 35

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 33

International Data Encryption
Algorithm (IDEA)
Swiss Federal Institute of Technology, 1990

Designed to replace DES

A Block cipher using a 128-bit key to encrypt 64-bit
data blocks

Used in PGP

IDEA is best known as a component of PGP (Pretty Good Privacy application). It is a block cipher that
uses a 128-bit length key to encrypt successive 64-bit blocks of plaintext. The procedure is quite
complicated using subkeys generated from the key to carry out a series of modular arithmetic and XOR
operations on segments of the 64-bit plaintext block. The encryption scheme uses a total of fifty-two 16-
bit subkeys. These are generated from the 128-bit subkey as follows:

• The 128-bit key is split into eight 16-bit keys which are the first eight subkeys.
• The digits of the 128-bit key are shifted 25 bits to the left to make a new key which is split into the

next eight 16-bit subkeys.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 36

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 34

The RSA Algorithm
Developed by Ron Rivest, Adi
Shamir, and Len Adleman
from MIT in 1977

Widely accepted public-key
algorithm

Factoring the product of large
prime numbers

The challenge of public-key cryptography is developing a system in which it is impossible to determine
the private key based solely on the knowledge of the public key. This can be accomplished through the
use of a one-way mathematical function. With a one-way function, it is relatively easy to compute a
result given some input values; however, it is extremely difficult, if not impossible, to determine the
original values if you start with the result. In mathematical terms, given x, computing f(x) is easy, but
given f(x), computing x is nearly impossible. The one-way function used in RSA is multiplication of
prime numbers. It is easy to multiply two big prime numbers, but for most very large primes, it is
extremely time-consuming to factor them (and when we say big prime numbers, we mean big prime
numbers – with 100 to 200 digits). Some forms of public-key cryptography, including RSA, use this
function by building a cryptosystem that uses two large primes to build the private key and the product of
those primes to build the public key.

As a result of the expiration of their patent on 20 September 2000, RSA® Security Inc. released the RSA
public key encryption algorithm into the public domain, allowing anyone to create products that
incorporate their own implementation of the algorithm. See
http://www.rsasecurity.com/news/pr/000906-1.html.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 37

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 35

Diffie-Hellman Key Agreement

Describes a method whereby two parties,
without any prior arrangements, can
agree upon a secret key that is known
only to them

• In particular, it is not known to an
eavesdropper listening to the
dialogue by which the parties agree
on the key

Excerpt from RFC 2631:

Diffie-Hellman key agreement requires that both the sender and recipient of a message have key pairs.
By combining one's private key and the other party's public key, both parties can compute the same
shared secret number. This number can then be converted into cryptographic keying material. That
keying material is typically used as a key-encryption key (KEK) to encrypt (wrap) a content-encryption
key (CEK) which is in turn used to encrypt the message data.

2.1. Key Agreement

The first stage of the key agreement process is to compute a shared secret number, called ZZ. When the
same originator and recipient public/private key pairs are used, the same ZZ value will result. The ZZ
value is then converted into a shared symmetric cryptographic key. When the originator employs a static
private/public key pair, the introduction of a public random value ensures that the resulting symmetric key
will be different for each key agreement.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 38

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 36

ElGamal
Developed in 1985 by Dr. T. ElGamal

Used for digital signatures and encryption

For encryption:
• Uses basic Diffie-Hellman process for key generation
• Modified version used in Digital Signature Algorithm (DSA)

standard
• Discrete logarithms in a finite field

ElGamal is an algorithm that can be used for either encryption of messages or for digital signatures. Dr.
T. ElGamal developed the ElGamal algorithm. Much like RSA uses mathematical problems that are
difficult in one direction but rather simple in the other, ElGamal does also. It is based on the discrete
logarithm problem.

The ElGamal system is a public-key cryptosystem based on the discrete logarithm problem. It consists of
both encryption and signature algorithms. The encryption algorithm is similar in nature to the Diffie-
Hellman key agreement protocol.

The system parameters consist of a prime p and an integer g, whose powers modulo p generate a large
number of elements, as in Diffie-Hellman. Alice has a private key a and a public key y, where y=ga (mod
p). Suppose Bob wishes to send a message m to Alice. Bob first generates a random number k less than p.
He then computes

y1=gk(mod p) and y2=m(mod yk)

Bob sends (y1 , y2) to Alice. Upon receiving the ciphertext, Alice computes

m = (y1
a mod p) mod y2

The ElGamal signature algorithm is similar to the encryption algorithm in that the public key and private
key have the same form; however, encryption is not the same as signature verification, nor is decryption
the same as signature creation as in RSA. DSA is based in part on the ElGamal signature algorithm.

Analysis based on the best available algorithms for both factoring and discrete logarithms shows that
RSA and ElGamal have similar security for equivalent key lengths. The main disadvantage of ElGamal is
the need for randomness, and its slower speed (especially for signing). Another potential disadvantage of
the ElGamal system is that message expansion by a factor of two takes place during encryption. However,
such message expansion is negligible if the cryptosystem is used only for exchange of secret keys.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 39

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 37

Hash Function
A public function that maps a plaintext message of
any length into a fixed length hash value used as the
authenticator

Pros
• Offers integrity without the cost of encryption
• Message can be read when authentication is unnecessary

Cons
• No confidentiality
• Can be altered by attackers to match altered message

A one-way hash function has many names. Among them are message digest, fingerprint, and compression
function. A hash function is an algorithm that takes a variable-length string as the input and produces a
fixed-length binary value (hash) as the output. The tricky part is to make this process irreversible. A
good analogy would be a blender. It works well one way (blending), but it is not possible to turn the
blender in reverse and recreate what was just blended. That is, knowing a hash and searching for a string
that produces that hash should be very, very hard (hence the word "one-way"). It should also be very,
very hard to find two arbitrary strings that produce the same hash value.

Many hash algorithms have been produced, but few have met these cryptographic requirements. Among
them are MD4, MD5 and SHA-1. Ron Rivest invented MD4 and MD5 for RSA Security, Inc. These
produce 128-bit hash values. SHA-1 (also known as simply SHA) was designed by NIST and NSA and
produces 160-bit hash values. SHA-1 is generally considered more secure than MD4 and MD5 due to its
longer hash value. To crack a 160-bit hash, you would need to try about 2160 (or 1.5 x 1048 in decimal)
various strings – an enormous number by any method.

However, no matter how difficult it is to ‘crack’ a hash, it is relatively easy by comparison to alter an
unencrypted hash to match an altered message. For example, if a message containing “Hello. How are
you?” was sent with a corresponding (unencrypted) hash, it would be easy for an attacker to change the
message to “Hi. How’re ya?”, take a hash of the new message and attach that hash to the new altered
message. Therefore, while hashes are useful, they do not guarantee authenticity of transmitted message
by themselves.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 40

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 38

Message Digest Algorithm
(MD5)
Developed in 1991 by Ron Rivest of MIT and RSA
Security, Inc.

Arbitrary length input produces a 128-bit message
digest

Excerpt from RFC 1321 (which identified MD5 to the Internet community):

The algorithm takes as input a message of arbitrary length and produces as output a 128-bit
"fingerprint" or "message digest" of the input. It is conjectured that it is computationally infeasible to
produce two messages having the same message digest, or to produce any message having a given
prespecified target message digest. The MD5 algorithm is intended for digital signature applications,
where a large file must be "compressed" in a secure manner before being encrypted with a private
(secret) key under a public-key cryptosystem such as RSA. The MD5 algorithm is designed to be
quite fast on 32-bit machines. In addition, the MD5 algorithm does not require any large substitution
tables; the algorithm can be coded quite compactly.

The MD5 algorithm is an extension of the MD4 message-digest algorithm. MD5 is slightly slower
than MD4, but is more "conservative" in design. MD5 was designed because it was felt that MD4
was perhaps being adopted for use more quickly than justified by the existing critical review; because
MD4 was designed to be exceptionally fast, it is "at the edge" in terms of risking successful
cryptanalytic attack. MD5 backs off a bit, giving up a little in speed for a much greater likelihood of
ultimate security.

Running an MD5 hash on the word “data” will result in a unique 128 bit message digest. Surprising
as it may be, performing an MD5 hash on the entire Bible will also produce a 128-bit fingerprint.

The MD5 algorithm, which can be implemented in as little as 8 lines of PERL code, is a very simple
and compact algorithm. And, because of the size of the hash, it is very secure and difficult to ‘crack.’
In addition, because of the complex nature of the algorithm, and because every bit of hash is
dependent on every bit of the message being hashed, it is not susceptible to attacks.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 41

Here are the 8 lines of PERL that perform an MD5 hash:

#!/bin/perl -iH9T4C`>_-JXF8NMS^$#)4=@<,$18%"0X4!`L0%P8*#Q4``04``04#!P`` ~JLA
@A=unpack N4C24,unpack u,$^I;@K=map{int abs 2**32*sin$_}1..64;sub L{($x=pop)
<<($n=pop)|2**$n-1&$x>>32-$n}sub M{($x=pop)-($m=1+~0)*int$x/$m}do{$l+=$r=read
STDIN,$_,64;$r++,$_.="\x80"if$r<64&&!$p++;@W=unpack V16,$_."\0"x7;$W[14]=$l*8
if$r<57;($a,$b,$c,$d)=@A;for(0..63){$a=M$b+L$A[4+4*($_>>4)+$_%4],M&{(sub{$b&$c
|$d&~$b},sub{$b&$d|$c&~$d},sub{$b^$c^$d},sub{$c^($b|~$d)})[$z=$_/16]}+$W[($A[
20+$z]+$A[24+$z]*($_%16))%16]+$K[$_]+$a;($a,$b,$c,$d)=($d,$a,$b,$c)}$v=a;for(
@A[0..3]){$_=M$_+${$v++}}}while$r>56;print unpack H32,pack V4,@A # RSA's MD5

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 42

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 39

Secure Hash Algorithm (SHA)
National Institute of Standards and Technology
• 1993, FIPS 180-1 - Secure Hash Standard (SHS)

Based on the MD4 algorithm

Maximum length input of 264 bits produces a 160 bit
message digest

Used in the Digital Signature Algorithm (DSA)

Excerpt from FIPS 180-1:

Explanation: This Standard specifies a Secure Hash Algorithm, SHA-1, for computing a condensed
representation of a message or a data file. When a message of any length < 264 bits is input, the SHA-1
produces a 160-bit output called a message digest. The message digest can then be input to the Digital
Signature Algorithm (DSA) which generates or verifies the signature for the message. Signing the
message digest rather than the message often improves the efficiency of the process because the message
digest is usually much smaller in size than the message. The same hash algorithm must be used by the
verifier of a digital signature as was used by the creator of the digital signature.

The SHA-1 is called secure because it is computationally infeasible to find a message which corresponds
to a given message digest, or to find two different messages which produce the same message digest.
Any change to a message in transit will, with very high probability, result in a different message digest,
and the signature will fail to verify. SHA-1 is a technical revision of SHA (FIPS 180). A circular left
shift operation has been added to the specifications in section 7, line b, page 9 of FIPS 180 and its
equivalent in section 8, line c, page 10 of FIPS 180. This revision improves the security provided by this
standard. The SHA-1 is based on principles similar to those used by Professor Ronald L. Rivest of MIT
when designing the MD4 message digest algorithm ("The MD4 Message Digest Algorithm," Advances in
Cryptology - CRYPTO '90 Proceedings, Springer-Verlag, 1991, pp. 303-311), and is closely modeled
after that algorithm.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 43

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 40

Hash Example
Hashes computed on a string of [Hello.]

SHA-1: 9B56D519CCD9E1E5B2A725E186184CDC68DE0731

MD5: F9776F93AC975CD47B598E34D9242D18

Demo – Hash Calc

Here is an example of hashing the string “Hello.” using both SHA-1 and MD5. The output is represented
in hexadecimal here. The SHA-1 is longer (160 bits) than the MD5 (128 bits).

The tool used to calculate this is available at:
http://www.deathstar.ch/security/downloads/files/HashCalc.exe

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 44

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 41

MD5 vs SHA-1
Security
• SHA-1 has a 32 bit longer digest record

Speed
• MD5 should run 25% faster than SHA-1

Simplicity
• SHA-1 is less complex than MD5

So which is the best way to hash your data? MD5 is shorter by 32 bits than SHA-1, and thus should run
25% faster. However, SHA-1 is a less complex function than is MD5. Therefore, the MD5 hash will run
somewhat faster – but is slightly more susceptible to attack because it is shorter. Currently, both are
considered excellent methods of creating unique strings to positively identify the associated messages
from which the strings were ‘hashed.’

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 45

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 42

Digital Signatures
An authentication mechanism which enables the
creator of a message to attach a code that acts as a
signature

Most like a notarized document
• Must be able to verify the author and time stamp of the

signature
• Must be able to authenticate the contents of the message at

the time of the signature
• The signature must be verifiable by a neutral 3rd party

Digital signatures provide integrity, signature assurance and non-repudiation of data. A sender of a
document can digitally sign the document before transmitting it to a partner. The receiver of the document
can verify who signed the document and determine whether it was modified or not since the signature
generation. Digital signatures are a key technology for doing e-business. Properties like integrity of data,
proof of data origin and signer authentication are very important for business documents that represent
commitments such as contracts, price lists, and manifests.

In the past, business information had primarily been transmitted over private networks. Today, more and
more business information exchange is done through the open Internet. As a result, the security problems
associated with the Internet can affect the business data exchange. Therefore, there must be a clear and
easy way to guarantee the identity and authenticity of the data that is passed for business purposes.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 46

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 43

Properties of a Digital Signature
Must contain a bit pattern that depends on the original
message

Must use some information unique to the sender

Must be easy to generate

Must be easy to verify the signature

Must be computationally infeasible to forge a
signature

Must be practical to retain the copy of the digital
signature

A Digital Signature embodies the following principles:

• Depends on the original message. This is a result of the hash function.
• Uses information unique to the sender. Accomplished through public key cryptographic means.
• Easy to generate. Hashing coupled with the encryption of the hash with a private key is a relatively

easy task to accomplish.
• Easy to verify the signature. Since the public key (to decrypt the encrypted hash) and the hashing

algorithm are publicly available, it is easy to perform the necessary computations to test the validity
of the signature.

• Computationally infeasible to forge a signature. The private key encryption portion of a signature
handles this requirement – only the sender can encrypt the hash with their private key.

• Practical to retain a copy of the signature. Since the signature is small (128 or 160 bits) it is easy to
retain it with the original message.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 47

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 44

Digital Signature Standard
(DSS) -1
National Institute of Standards and Technology
• 1994, FIPS 186-2 – Digital Signature Standard (DSS)

Specifies algorithms appropriate for applications
requiring a digital signature

Uses either RSA or the Digital Signature Algorithm
(DSA)

Excerpt from 1994 FIPS 186-2:

Explanation: This Standard specifies a Digital Signature Algorithm (DSA) appropriate for applications
requiring a digital rather than written signature. The DSA digital signature is a pair of large numbers
represented in a computer as strings of binary digits. The digital signature is computed using a set of
rules (i.e., the DSA) and a set of parameters such that the identity of the signatory and integrity of the data
can be verified. The DSA provides the capability to generate and verify signatures. Signature generation
makes use of a private key to generate a digital signature. Signature verification makes use of a public
key which corresponds to, but is not the same as, the private key. Each user possesses a private and public
key pair. Public keys are assumed to be known to the public in general. Private keys are never shared.
Anyone can verify the signature of a user by employing that user's public key. Signature generation can
be performed only by the possessor of the user's private key.

A hash function is used in the signature generation process to obtain a condensed version of data, called a
message digest. The message digest is then input to the Digital Signature Algorithm (DSA) or RSA to
generate the digital signature. The DSA is based on a modification of the ElGamal algorithm by Claus
Schnorr in 1990. The digital signature is sent to the intended verifier along with the signed data (often
called the message). The verifier of the message and signature verifies the signature by using the sender's
public key. The same hash function must also be used in the verification process. The hash function is
specified in a separate standard, the Secure Hash Standard (SHS), FIPS 180. Similar procedures may be
used to generate and verify signatures for stored as well as transmitted data.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 48

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 45

DSS -2

Graphical representation of the DSS.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 49

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 46

Digital Certificates
An answer to the Internet trust problem

Trusted 3rd parties issue certificates to people or
companies who prove their ID

Demo – Digital Certificate

A digital certificate is an assurance provided by a third party (called a Certification Authority) that a
public key does indeed belong to the purported owner. Thus it binds an identity to the public key. The
identity, or subject name, may be that of a person, corporation, or some other entity such as a web server.

Digital Certificates are also called Digital IDs. Digital IDs are the electronic counterparts to driver
licenses, passports, and membership cards. You can present a Digital ID electronically to prove your
identity or to validate your rights to access information or services online.

Digital IDs bind an identity to a pair of electronic keys that can be used to encrypt and sign digital
information. A Digital ID makes it possible to verify someone's claim that they have the right to use a
given key, helping to prevent people from using phony keys to impersonate other users. Used in
conjunction with encryption, Digital IDs provide a more complete security solution, assuring the identity
of all parties involved in a transaction.

A Digital ID is issued by a Certification Authority (CA) and signed with the CA's private key.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 50

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 47

Digital Certificate Contents
A Digital Certificate (aka Digital ID) typically
contains the:
• Owner's public key
• Owner's name
• Expiration date of the public key
• Name of the issuer (the CA that issued the Digital ID)
• Serial number of the Digital ID
• Digital signature of the issuer
• X.509

The certificate contains, among other fields, a serial number, the subject name, the subject’s public key,
and the issuer’s name. The issuer, or Certificate Authority, digitally signs the certificate to provide
integrity protection and assurance that the certificate is authentic.
X.509 is the most widely used standard for defining digital certificates. X.509 is actually an ITU
Recommendation, which means that has not yet been officially defined or approved. As a result,
companies that issue digital certificates, as well as companies that create software that use digital
certificates, have implemented the standard in different ways. For example, Netscape and Microsoft both
use X.509 certificates in support of Secure Socket Layer (SSL) in their Web servers and browsers. But an
X.509 Certificate generated by Netscape may not be readable by Microsoft products, and vice versa.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 51

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 48

Cryptography Benefits
In addition to keeping data ‘safe’ from disclosure,
cryptography can be leveraged to provide other
important benefits
• Authentication
• Integrity
• Nonrepudiation

So cryptography can keep our data safe (provided, of course, that we keep our keys safe). But what else
can it do for us? Given some of the tools that have been mentioned already, we can use cryptography and
cryptographic operations to provide three of the tenants of information security:

• Authentication
• Integrity
• Nonrepudiation

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 52

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 49

Authentication
Ability of a receiver of a message to be sure of the
origin
• Prevents ‘masquerading’ by unscrupulous individuals

Accomplished through digital signatures

Authentication is the process of determining whether someone or something is, in fact, who or what it is
declared to be. The use of digital certificates, which have a digital signature attached to them and are
issued and verified by a Certificate Authority (CA) as part of a public key infrastructure is considered
likely to become the standard way to perform authentication on the Internet. The digital certificates are
our means to provide strong authentication – even across the untrusted Internet.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 53

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 50

Integrity
The ability to verify that a message has not been
modified between sending and receipt
• Prevents intruders from changing messages in transit

Accomplished through digital signatures

Integrity, in terms of data and network security, is the assurance that information can only be accessed or
modified by those authorized to do so. To ensure data integrity, we can use some of the principles of
cryptography. We can use digital signatures, which we will discuss later, to verify that messages have not
been tampered with in transit.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 54

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 51

Nonrepudiation
A sender should not be able to deny sending a
message when he/she was in fact the sender

Accomplished by digital signatures

In general, nonrepudiation is the ability to ensure that a party to a contract or a communication cannot
deny the authenticity of their signature on a document or the sending of a message that they originated.
On the Internet, the digital signature is used not only to ensure that a message or document has been
electronically signed by the person that purported to sign the document, but also, since a digital signature
can only be created by one person, to ensure that a person cannot later deny that they furnished the
signature.

Since no security technology is absolutely foolproof, some experts warn that the digital signature alone
may not always guarantee nonrepudiation. It is suggested that multiple approaches be used, such as
capturing unique biometric information and other data about the sender or signer that collectively would
be difficult to repudiate.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 55

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 52

Common Attacks
Brute force (Ciphertext only)

Known-plaintext

Chosen-plaintext

Adaptive-chosen-plaintext

Chosen-ciphertext

Adaptive-chosen-ciphertext

A brute force attack, also known as a ciphertext-only attack, is one in which the cryptanalyst obtains a
sample of ciphertext, without the plaintext associated with it. This data is relatively easy to obtain in
many scenarios. To decrypt this ciphertext, every possible key is tried one by one and checking to see if
the plaintext that is returned is meaningful.

A known-plaintext attack is one in which the cryptanalyst obtains a sample of ciphertext and the
corresponding plaintext as well.

A chosen-plaintext attack is one in which the cryptanalyst is able to choose a quantity of plaintext and
then obtain the corresponding encrypted ciphertext.

An adaptive-chosen-plaintext attack is a special case of chosen-plaintext attack in which the
cryptanalyst is able to choose plaintext samples dynamically, and alter his or her choices based on the
results of previous encryptions.

A chosen-ciphertext attack is one in which cryptanalyst may choose a piece of ciphertext and attempt to
obtain the corresponding decrypted plaintext. This type of attack is generally most applicable to public-
key cryptosystems.

An adaptive-chosen-ciphertext is the adaptive version of the above attack. A cryptanalyst can mount an
attack of this type in a scenario in which he has free use of a piece of decryption hardware, but is unable
to extract the decryption key from it.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 56

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 53

Steganography -1
Steganography is the art of concealing information
‘in plain view’

Usually crafted such that the very existence of the
message is unknown

Encrypted text is easily detected
• Many organizations prohibit the use of cryptography

completely

Cryptography is certainly not the only way to hide or conceal information. One way that has been
growing in popularity lately is steganography.

In his history of the Persian Wars, Herodotus tells of a messenger who shaved his head and allowed a
secret message to be tattooed on his scalp. He waited until his hair grew back. Then he journeyed to
where the recipient awaited him and shaved his head again. The message was revealed. It was history’s
first use of steganography.

There are many steganographic examples from recent times. Possibly most noticeable was the case of
Navy Captain Jeremiah Denton Jr. When captured by enemy forces in Vietnam, Captain Denton was
subjected to seven days and nights of interrogation and torture – many times becoming unconscious as a
result of the torture. When he was put in front of the camera to make a statement to the media (a Japanese
reporter), Captain Denton made the following statement:

"Whatever the position of my government is, I believe in it, yes sir…I am a member of that government
and it is my job to support it, and I will as long as I live."

This was reviewed by the Vietnamese, and found to be innocuous enough to pass out of the country and
to be given to the international press. What the Vietnamese failed to notice was that Captain Denton
blinked Morse code for ‘TORTURE.’

So why would we want to use computers to aid us in steganography when cryptography is so prevalent
now? Traditional ciphers give themselves away because they appear to be gibberish, and anyone who
intercepts them will at least have reason to suspect the sender’s motives. But steganography hides the
message inside an ordinary-looking object such as a digitized photo or sound file. It is “visible” only to
someone who knows it’s there. Thus, photo agencies use it to create digital “watermarks” for their
pictures. The U.S. Customs Service has warned that some web sites use it to mask pornographic images.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 57

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 54

Steganography -2
With computers, steganography has gotten ‘easier’

Easy to hide information in many common file types
• .jpeg, .mpeg, .mp3, .bmp, .gif, etc.
• .exe, .doc, and so on

Digital images are good vehicles for steganography. All images contain redundant data: information as to
color, for example, that is present but unnecessary for the picture to be seen and understood. This enables
the senders of a secret message to substitute digitized text for some of the redundant pixels in a photo, for
example. Or it could be a verbal message; when transmitting information, computers treat sound, image
and text files all the same. They are all parts of bitstreams.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 58

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 55

How Does Steganography
Work?
Three requirements
• Host file in which to hide the information
• File to be hidden
• Process to encode the two

In order to perform steganography, one must have three requirements on place:

• A host file (in which to hide the information). This host file can be of almost any format, but the
most common formats are those that represent digital renderings of analog data. Some examples
include picture files, audio files, and video files. These are excellent places to hide information –
and will be discussed later.

• The actual file which will be hidden. This can be of any format, since it must be digital (as it is
stored in a computer) and can be combined with the host file.

• A process to encode the two files. This will be some algorithm to take the file to be hidden and
encode it in the host. There are many ways – the most common being Least Significant Bit (LSB)
encoding, which will be covered later.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 59

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 56

How is it Hidden? -1
Common way – replace the least significant bits
(LSB) in graphic (or music) files

LSBs are usually the last one or two bits in the octets
(10010100 for an 8 bit file)
• Most significant bits are to the left and have a great impact on

the color of a pixel – LSBs don’t
• Changing these bits minimally effects the color

Digital steganography takes a number of forms, but most of them are variations on the most popular
technique. It's called "least significant bit" steganography, and to understand how it works, you have to
understand the digitizing of analog media work. Consider the pixels on the computer screen that make up
a photograph, or the ‘pieces’ of sound that blend together to form a song as it streams from a CD player.
Each pixel and each piece of sound are recorded as a small number of bits – ranging from 18 to 32 (or
possibly more). Most of the bits specify important information about the color or sound of the sensory
blip they represent, but a few stand for nuances the average eye or ear won't even pick up. These latter,
the so-called least significant bits (LSBs), are effectively indistinguishable from noise. And since
encrypted data is sufficiently random, it is also indistinguishable from noise. Therefore, when the LSBs
of a favorite picture or sound file have been replaced with encrypted data, it may be very difficult to
distinguish that encrypted data from the noise introduced into the file – either through transmission or
when the analog item (photo or sound) was converted to digital.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 60

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 57

How is it Hidden? -2
Changing all of the LSBs for a graphic file will
usually not be detectable to the eye

Can store the file in only those bits throughout the
file

So let’s consider the .jpeg example. Jpeg pictures are 24 bit files – which means that each pixel is defined
by a 24-bit word. If we can remove one or two of the LSBs, and leave the 22 other bits in tact, we can
implant our data in place of the 1s and 0s we stripped out. We can further obscure our information by
passing it through an encryption algorithm prior to sticking the bits in the place of the LSBs we stripped
out. There are many tools that allow us to do exactly this – with jpeg, mp3, mpeg, and other common file
formats.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 61

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 58

Example of Steganography -1

So let’s look at an example of steganography. This is a picture obtained from www.whitehouse.gov. It is
a 60k jpeg file. This is the picture without the message attached.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 62

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 59

Hidden File (gettysburgaddress.txt)

Four score and seven years ago our fathers brought forth on this continent a new
nation, conceived in liberty and dedicated to the proposition that all men are created equal.
Now we are engaged in a great civil war, testing whether that nation or any nation so
conceived and so dedicated can long endure. We are met on a great battlefield of that war.
We have come to dedicate a portion of that field as a final resting-place for those who here
gave their lives that that nation might live. It is altogether fitting and proper that we should
do this. But in a larger sense, we cannot dedicate, we cannot consecrate, we cannot hallow
this ground.

The brave men, living and dead who struggled here have consecrated it far above our
poor power to add or detract. The world will little note nor long remember what we say
here, but it can never forget what they did here. It is for us the living rather to be dedicated
here to the unfinished work which they who fought here have thus far so nobly advanced. It
is rather for us to be here dedicated to the great task remaining before us--that from these
honored dead we take increased devotion to that cause for which they gave the last full
measure of devotion--that we here highly resolve that these dead shall not have died in vain,
that this nation under God shall have a new birth of freedom, and that government of the
people, by the people, for the people shall not perish from the earth.

This is the contents of the .txt file which is encrypted and encoded into the picture. It is, of course,
Abraham Lincoln’s Gettysburg Address.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 63

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 60

Example of Steganography -2
Demo – Steganography

A free tool called ‘JP Hide and JP Seek’ (http://linux01.gwdg.de/~alatham/stego.html) was used to
encode a Blowfish encrypted message (with a key of ‘testing’). This is the picture with the blowfish
encrypted .txt file attached. Even the most discerning eye won’t be able to distinguish differences from
the source picture.

The three requirements for steganography:

Host file: whitehouse.jpeg

File to be hidden: blowfish[gettysburgaddress.txt, testing]

Process to encode the two: JP Hide and JP Seek

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 64

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 61

Impact of Steganography
‘New’ threats from steganography
• More difficult to track data coming in to and leaving your

network
• Threats to confidentiality
• Potential malicious software ‘hiding’

Bottom line: awareness is a key to mitigate
steganographic threats

Demo – Spam Mimic

So why is steganography an issue for security administrators? If you are very aware of what traffic is on
your network – what is coming in and going out, that is good. However, if some of the people on your
network are able to encode ‘bad messages’ (corporate secrets, etc.) in seemingly innocuous files such as
.jpeg, .mp3, and .exe files – how can we be truly certain that we are protecting our information
completely and without error? It presents quite a challenge. So steganography simply provides us with a
greater incentive for being vigilant. Administrators can review data traffic, and further analyze other
access control and data security measures, establishing risk mitigating steps to deal with this threat.

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 65

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 62

Review Questions -1
1. What are the two main types of ciphers?

2. What are the components of a cryptosystem?

3. What is the keyspace of 3DES implemented with
K1, K2, K1?

4. Which encryption method requires two different
keys?

5. Which algorithm was chosen for the AES?

1. What are the main types of ciphers?

Block and stream ciphers.

2. What are the components of a cryptosystem?
All possible plaintexts, all possible ciphertexts, the encryption algorithm, and all possible keys

3. What is the keyspace of 3DES implemented with K1, K2, K1?
256*2 or 2112

4. Which encryption method required two different keys?
Asymmetric encryption

5. Which algorithm was chosen for AES?
Rijndael

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 66

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 63

Review Questions -2
6. How is a digital signature constructed by the

DSS?

7. Which attack on a cryptosystem requires that the
attacker try every possible key on some
ciphertext?

8. List the three necessary components for
steganographic encoding.

6. How is a digital signature constructed by the DSS?

A plaintext is hashed. The hash is then encrypted with the sender’s private key and attached to the
plaintext. This is then sent as the message. To verify, the receiver decrypts the encrypted hash with
the sender’s public key and compares this to a hash that they have computed for the message. If the
two hashes match, it is a valid, unaltered message.

7. Which attack on a cryptosystem, requires that the attacker try every possible key on some
ciphertext?
Brute force

8. List the three necessary components for steganographic encoding.
Host file, file to be hidden, and a process to encode the two

Student Workbook – Module: 6 Cryptography

© 2002 Carnegie Mellon University Page 67

© 2002 Carnegie Mellon University Module 6: Cryptography - slide 64

Summary
History of cryptography

Basic cryptography terms

General types of encryption

Common encryption methods

Cryptography applications

Steganography

