
Networked Systems Survivability
CERT® Coordination Center
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

© 2002 Carnegie Mellon University
® CERT, CERT Coordination Center and Carnegie Mellon are registered in the
U.S. Patent and Trademark Office

Information Security for Technical Staff

Module 5:

TCP/IP SECURITY

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 2

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 2

Instructional Objectives -1
Summarize the history of TCP/IP

Describe the layered architecture of TCP/IP

Describe characteristics of the Internet Protocol (IP)

Identify and describe fields within an IP Header

Describe IP Fragmentation

Identify security concerns associated with IP

Describe the primary function of the Address Resolution Protocol
(ARP)

Identify security concerns associated with ARP

Describe the primary functions of the Internet Control Message
Protocol (ICMP)

Some background knowledge of data networking and the TCP/IP suite is assumed for this portion of the
course. Therefore this module does not attempt to provide a complete explanation of the entire protocol
suite. Rather, it focuses on the protocols most prevalent in the fields of networked systems survivability
and information security.

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 3

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 3

Instructional Objectives -2
Identify common ICMP TYPE and Code fields and describe common
uses

Identify security concerns associated with ICMP

Describe the function of Service Ports

Describe characteristics of the Transmission Control Protocol (TCP)

Identify and describe fields within a TCP Header

Identify security concerns with TCP

Describe characteristics of the User Datagram Protocol (UDP)

Identify and describe fields within a UDP Header

Identify security concerns associated with UDP

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 4

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 4

Overview
TCP/IP history

TCP/IP architecture

IP

ARP

ICMP

Ports

TCP

UDP

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 5

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 5

TCP/IP Suite History
1974: Robert E. Kahn and
Vinton G. Cerf proposed the design
that formed the basis for the Internet Protocol (IP) and
Transmission Control Protocol (TCP)

1978: DoD declared TCP/IP a MIL STD for its data
communications networks

Sept, 1981: RFCs 790 (Assigned Numbers), 791 (IP), 792
(ICMP), and 793 (TCP) edited by Jon Postel

1983: DARPA mandated TCP/IP use

Required for connectivity to modern Internet

The architecture of TCP/IP is often called the Internet architecture because TCP/IP and the Internet are so
closely interwoven. Internet standards were developed by the Defense Advanced Research Projects
Agency (DARPA) and eventually passed on to the Internet Society.

The Internet was originally proposed as a method of testing the viability of packet-switching networks.
During its tenure with the project, DARPA foresaw a network of leased lines connected by switching
nodes. The network was called ARPANET, and the switching nodes were called Internet Message
Processors, or IMPs. The ARPANET was initially to be comprised of four IMPs located at the University
of California at Los Angeles, the University of California at Santa Barbara, the Stanford Research
Institute, and the University of Utah. The original IMPs were to be Honeywell 316 minicomputers.

Bolt, Beranek, and Newman (BBN), a company that had a strong influence on the development of the
network in the following years, won the contract for the installation of the network. The contract was
awarded in late 1968, followed by testing and refinement over the next five years. In 1971, ARPANET
entered into regular service. Machines used the ARPANET by connecting to an IMP using the "1822"
protocol—so called because that was the number of the technical paper describing the system. During the
early years, the purpose and utility of the network was widely discussed, leading to refinements and
modifications as users requested more functionality from the system.

A commonly recognized need was the capability to transfer files from one machine to another, as well as
the capability to support remote logins. Remote logins would enable a user in Santa Barbara to connect to
a machine in Los Angeles over the network and function as though he or she were in front of the UCLA
machine. The protocol then in use on the network wasn't capable of handling these new functionality
requests, so new protocols were continually developed, refined, and tested.

Remote login and remote file transfer were finally implemented in a protocol called the Network Control
Program (NCP). Later, electronic mail was added through File Transfer Protocol (FTP). Together with
NCP's remote logins and file transfer, this formed the basic services for ARPANET.

By 1973, it was clear that NCP was unable to handle the growing volume of traffic and proposed new
functionality. A project was begun to develop a new protocol. The TCP/IP and gateway architectures
were first proposed in 1974. The published article by Cerf and Kahn ("A Protocol for Packet Network
Interconnection") described a system that provided a standardized application protocol that also used end-
to-end acknowledgments. Neither of these concepts were really novel at the time, but more importantly

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 6

(and with considerable vision), Cerf and Kahn suggested that the new protocol be independent of the
underlying network and computer hardware. Also, they proposed universal connectivity throughout the
network. These two ideas were radical in a world of proprietary hardware and software, because they
would enable any kind of platform to participate in the network. The protocol was developed and became
known as TCP/IP.

A series of RFCs (Requests for Comment, part of the process for adopting new Internet Standards) was
issued in 1981, standardizing TCP/IP version 4 for the ARPANET. In 1982, TCP/IP replaced NCP as the
dominant protocol of the growing network, which was now connecting machines across the continent. It
is estimated that a new computer was connected to ARPANET every 20 days during its first decade. (That
might not seem like much compared to the current estimate of the Internet's size doubling every year, but
in the early 1980s it was a phenomenal growth rate.)

During the development of ARPANET, it became obvious that nonmilitary researchers could use the
network to their advantage, enabling faster communication of ideas as well as faster physical data
transfer. A proposal to the National Science Foundation led to funding for the Computer Science
Network in 1981, joining the military with educational and research institutes to refine the network. This
led to the splitting of the network into two different networks in 1984. MILNET was dedicated to
unclassified military traffic, whereas ARPANET was left for research and other nonmilitary purposes.
ARPANET's growth and subsequent demise came with the approval for the Office of Advanced Scientific
Computing to develop wide access to supercomputers. The Department of Defense finally declared
ARPANET obsolete in 1990, when it was officially dismantled.

The Internet has grown far beyond its original scope. The original networks and agencies that built the
Internet no longer play a crucial role for the current Internet. The Internet has evolved from a simple
backbone network, through a three-tiered hierarchical structure, to a huge network of global networks.
Through all of this incredible change one thing has remained constant: the Internet is built on the TCP/IP
protocol suite. [ISOC 2001]

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 7

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 6

TCP/IP Layered Architecture

TCP/IPTCP/IP OSIOSI
LayersLayers LayersLayers
Application Application

Presentation

Session

Transport Transport

Internet Network

Network Data Link

Access Physical
1

2

3

4

1

2

3

4

5

6

7

Application
FTP

SMTP
TELNET

HTTP

TCP

IP

LINK

TCP/IP
PROTOCOL

SUITE

RARPARP

ICMP IGMP

Application
TFTP
NFS

SNMP
DNS

UDP

NETWORK
1

2

3

4

The OSI Reference Model contains seven layers that define the functions of data communications
protocols. Each layer of the OSI model represents a task performed when data is transferred between
cooperating applications across a network. Looking at this slide, you can see that the protocols are like a
pile of building blocks stacked one upon another. Because of this appearance, the structure is often called
a stack or protocol stack. A layer does not define a single protocol; it defines a data communications
function that may be performed by any number of protocols. Therefore, each layer may contain multiple
protocols, each providing a service suitable to the function of that layer. For example, the Hypertext
Transfer Protocol and the Simple Network Management Protocol both provide user services and both are
part of the Application Layer. Every protocol communicates with its peer. A peer is an implementation
of the same protocol in the equivalent layer on a remote system (i.e., the local file transfer protocol is the
peer of a remote file transfer protocol). Peer level communications must be standardized for successful
communications to take place. In the abstract, each protocol is only concerned with communicating to its
peer; it does not care about the layer above or below it.

There must also be conformity on how to pass data between the layers on a single computer, because
every layer is involved in sending data from a local application to an equivalent remote application. The
upper layers rely on the lower layers to transfer the data over the underlying network. Data is passed
down the stack from one layer to the next, until it is transmitted over the network by the Physical Layer
protocols. At the remote end, the data is passed up the stack to the receiving application. The individual
layers do not need to know how the layers above and below them function; they only need to know how
to pass data to them. Isolating network communications functions in different layers minimizes the
impact of technological change on the entire protocol suite. New applications can be added without
changing the physical network, and new network hardware can be installed without rewriting the
application software.

Although the OSI model is useful, the TCP/IP protocols don't match its structure exactly. Generally,
TCP/IP is described using three to five functional layers. The common DoD reference model, which is
also known as the Internet reference model is shown in the slide.

As in the OSI model, data is passed down the stack when it is being sent to the network, and up the stack
when it is being received from the network. The four-layered structure of TCP/IP is seen in the way data
is handled as it passes down the protocol stack from the Application Layer to the underlying physical
network. Each layer in the stack adds control information to ensure proper delivery. This control

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 8

information is called a header because it is placed in front of the data to be transmitted. Each layer treats
all of the information it receives from the layer above as data and places its own header in front of that
information. The addition of delivery information at every layer is called encapsulation. (Figure 1
illustrates this.) When data is received, the opposite happens. Each layer strips off its header before
passing the data on to the layer above. As information flows back up the stack, information received from
a lower layer is interpreted as both a header and data. [Cisco 1]

Figure 1: TCP/IP Encapsulation

An audiovisual web tutorial on TCP/IP is available at:

http://www.rad.com/audio_presentations/tcp_ip/slide01.htm

The cyber-instructor has a cool British accent too. Check it out!

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 9

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 7

IP Characteristics

The Internet Protocol is the building block of the Internet. Its functions include:

• Defining the packet (or datagram), which is the basic unit of transmission in the Internet

• Defining the Internet addressing scheme

• Moving data between the Network Access Layer and the Transport Layer

• Routing packets to remote hosts

• Performing fragmentation and re-assembly of packets

As stated in the slide, IP is a connectionless protocol. This means that IP does not exchange any control
information to establish an end-to-end connection before transmitting data. In contrast, a connection-
oriented protocol exchanges control information with the remote system to verify that both systems are
ready to transmit data before any data is sent. This is sometimes referred to as a handshake. When the
handshaking is successful, the systems have established a connection. Internet Protocol relies on
protocols in other layers (transport or application) to establish the connection if they require connection-
oriented service.

IP also relies on protocols in the other layers to provide error detection and error recovery. The Internet
Protocol is sometimes called an unreliable protocol because it contains only minimal error detection and
recovery code—a rudimentary checksum is performed only on the IP Header. This is not to say that the
protocol is prone to errors and poor performance. IP can be relied upon to accurately deliver data to the
destination network, but it doesn't check whether that data was correctly received. Protocols in other
layers of the TCP/IP architecture provide this checking when it is required. [Kessler 2001]

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 10

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 8

IP Addressing
IP Addresses logically identify networks and hosts.

• 32-bits separated into four octets, represented in dotted decimal

• Subnet mask delineates network from host address

• Performing a “Logical And” of subnet mask and host IP address gives you the network
address (where 1+1=1 and anything else = 0)

Example:
Host IP: 128.9.160.27 = 10000000.00001001.10100000.00011011

Subnet mask: 255.255.255.0 = 11111111.11111111.11111111.00000000

Network address: 128.9.160.0 = 10000000.00001001.10100000.00000000

C:\ nslookup 128.9.160.27 = www.rfc-editor.org

AND

Network classes: Class A: NNN.hhh.hhh.hhh NNN: 1 to 127
Class B: NNN.NNN.hhh.hhh NNN: 128 to 191
Class C: NNN.NNN.NNN.hhh NNN: 192 to 223Network.Host

An IP address consists of four octets (1 octet = 8 bits), or 32 bits. The value in each octet ranges from 0
to 255 decimal, or 00000000 - 11111111 binary. Here's how binary octets convert to decimal:

 1 1 1 1 1 1 1 1

 128 64 32 16 8 4 2 1 (128+64+32+16+8+4+2+1=255)

Now here's a sample octet conversion:

 0 1 0 0 0 0 0 1

 0 64 0 0 0 0 0 1 (0+64+0+0+0+0+0+1=65)

And this is a sample address representation (4 octets):

 10. 1. 23. 19 (decimal)

 00001010.00000001.00010111.00010011 (binary)

These octets are broken down to provide an addressing scheme that can accommodate large and small
networks. There are five different classes of networks, A to E. Here, we'll only be addressing classes A to
C, since classes D and E are reserved. To determine the class of an address, look at the first octet of the
dotted-decimal address.

Class A: 1 - 126 (eg. 10.1.23.19)

Class B: 128-191 (eg. 172.16.19.48)
Class C: 192-223 (eg. 193.18.9.10)

In a class A address, the first octet is the network portion, so the class A example above has a major
network address of 10. Octets 2, 3, and 4 (the next 24 bits) are for the network manager to divide into
subnets and hosts as she sees fit. Class A addresses are used for networks that have more than 65,536
hosts (actually, up to 16,581,375 hosts!). In a class B address, the first two octets are the network portion,
so the class B example above has a major network address of 172.16. Octets 3 and 4 (16 bits) are for local
subnets and hosts. Class B addresses are used for networks that have between 256 and 65,536 hosts.

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 11

In a class C address, the first three octets are the network portion. The class C example above has a major
network address of 193.18.9. Octet 4 (8 bits) is for local subnets and hosts - perfect for networks with less
than 256 hosts.

In order to use your addresses, you need to understand subnetting. Subnetting allows you to create
multiple logical networks that exist within a single Class A, B, or C network. If you don't subnet, you
will only be able to use one network from your Class A, B, or C network. Unless you have been assigned
many major networks, you really need to subnet.

A subnet mask is defined for each IP address. The subnet mask identifies which portion of the 4 octets is
used to identify the network, with the remaining bits identifying the node. If you want no subnetting, use
these default masks (255 - strictly follow number, 0 - wildcard):

Class A: 255.0.0.0
Class B: 255.255.0.0
Class C: 255.255.255.0

Let's use these two addresses for some examples: 171.68.3.3 and 171.68.2.3. If the subnet mask is
255.255.255.0, the first 24 bits are masked, so a router compares the first 3 octets of the two addresses.
Since the masked bits are not the same, the router knows that these addresses belong to different subnets.

If the subnet mask is 255.255.0.0, the first 16 bits are masked, so a router compares the first 2 octets of
the two addresses. Since the masked bits are the same, the router knows that these addresses belong to
the same subnet. Nodes and routers use the mask to identify the network on which an address resides.
For instance, imagine that Pittsburgh proper is a class B network, and think of the streets as subnets.
Each street must have a unique name. How would the postal service deliver a letter or find the correct
destination if there were two Craig Streets? Each house number can be thought of as a unique identifier
for that street. The house numbers themselves can be duplicated on other streets: 33 Market Street is not
the same as 33 Craig Street.

Pittsburgh.Craig.33 Pittsburgh.Market.33
171.68. 3. 3 171.68. 2. 3

You need to perform a logical "AND" operation to find out what subnet your node is in. Performing an
"AND" operation means that anytime you "AND" a 0 value to another 0 or a 1 value, the result is 0. Only
a 1 ANDed with another 1 value will result in a 1 value. Here's how it works:

0 AND 0 = 0, 0 AND 1 = 0, 1 AND 1 = 1

Let's compare our sample addresses (171.68.3.3 and 171.68.2.3) against the subnet mask 255.255.240.0.
We need to compare the binary representation of the third octet of the mask with the binary representation
of the third octets of the addresses. In order to do this, we'll perform a logical "AND" operation on the
corresponding bits in each octet.

The masked bits are those that are "turned on," or 1 in the mask. Since the masked bits in both addresses
are the same, the router knows that these addresses belong to the same subnet.

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 12

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 9

IP Packet Format
Run pointer over each box to reveal descriptions

Demo – Packet Capture

The basic IP packet header format is shown in the slide above. The format of the diagram is consistent
with the RFC; bits are numbered from left-to-right, starting at 0. Each row represents a single 32-bit
word; note that an IP header will be at least 5 words (20 bytes) in length. The fields contained in the
header, and their functions, are:

Version: Specifies the IP version of the packet. The current version of IP is version 4, so this field will
contain the binary value 0100. [NOTE: Actually, many IP version numbers have been assigned besides 4
and 6; see the IANA's list of IP Version Numbers.]

Internet Header Length (IHL): Indicates the length of the packet header in 32 bit (4 octet) words. A
minimum-length header is five 32-bit words, so this field always has a value of at least 5 (0101) Since
the maximum value of this field is 15, the IP Header can be no longer than fifteen 32-bit words.

Type of Service (TOS): Allows an originating host to request different classes of service for packets it
transmits. Although not generally supported today in IPv4, the TOS field can be set by the originating
host in response to service requests across the Transport Layer/Internet Layer service interface, and can
specify a service priority (0-7) or can request that the route be optimized for either cost, delay,
throughput, or reliability.

Total Length: Indicates the length (in bytes, or octets) of the entire packet, including both header and
data. Given the size of this field, the maximum size of an IP packet is 64 KB, or 65,535 bytes. In practice,
packet sizes are limited to the maximum transmission unit (MTU).

Identification: Used when a packet is fragmented into smaller pieces while traversing the Internet, this
identifier is assigned by the transmitting host so that different fragments arriving at the destination can be
associated with each other for reassembly.

Flags: Also used for fragmentation and reassembly. The first bit is called the More Fragments (MF) bit,
and is used to indicate the last fragment of a packet so that the receiver knows that the packet can be
reassembled. The second bit is the Don't Fragment (DF) bit, which suppresses fragmentation. The third
bit is unused (and always set to 0).

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 13

Fragment Offset: Indicates the position of this fragment in the original packet. In the first packet of a
fragment stream, the offset will be 0; in subsequent fragments, this field will indicates the offset in
increments of 8 bytes.

Time-to-Live (TTL): A value from 0 to 255, indicating the number of hops that this packet is allowed to
take before discarded within the network. Every router that sees this packet will decrement the TTL value
by one; if it gets to 0, the packet will be discarded.

Protocol: Indicates the higher layer protocol contents of the data carried in the packet; options include
ICMP (1), TCP (6), UDP (17), or OSPF (89). A complete list of IP protocol numbers can be found at the
IANA's list of Protocol Numbers. An implementation-specific list of supported protocols can be found in
the protocol file, generally found in the /etc (Linux/Unix), c:\windows (Windows 9x, ME), or
c:\winnt\system32\drivers\etc (Windows NT, 2000) directory.

Header Checksum: Carries information to ensure that the received IP header is error-free. Remember
that IP provides an unreliable service and, therefore, this field only checks the header rather than the
entire packet. The checksum field is the 16 bit one's complement of the one's complement sum of all 16
bit words in the header. For purposes of computing the checksum, the value of the checksum field is
zero. This means that the header is chunked into (a maximum of 12) 16 bit pieces. These pieces are then
summed using one’s complement math. Finally, a one’s complement is calculated for this 16 bit value—
which is the actual 16 bit checksum.

Source Address: IP address of the host sending the packet.

Destination Address: IP address of the host intended to receive the packet.

Options: A set of options which may be applied to any given packet, such as sender-specified source
routing or security indication. The option list may use up to 40 bytes (10 words), and will be padded to a
word boundary; IP options are taken from the IANA's list of IP Option Numbers.

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 14

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 10

IP Fragmentation and
Reassembly
Fixed link-layer frame size for all networks
• Called the Maximum Transmission Unit (MTU)

Strategy
• Fragment only when necessary (when MTU < Packet size)

• Avoid fragmentation at source host—let routers manage it

• Delay reassembly until destination host

• Don’t try to recover from lost fragments—resend new packet

X.25 = 576 bytes, Ethernet = 1500 bytes, FDDI = 4352 bytes

Demo – Packet Capture - Fragmented

Whenever the IP layer receives an IP packet to send, it determines which interface on the local router the
packet is being sent out on and then queries that interface to obtain its MTU. IP compares the MTU with
the packet size and performs fragmentation, if necessary. Fragmentation can take place either at the
original sending host or at an intermediate router—although source hosts typically do this for testing or
diagnostic purposes and generally not for operational communication.

When an IP packet is fragmented, it is not reassembled (typically) until it reaches its final destination.
The IP layer at the destination system performs the reassembly. The goal is to make fragmentation and
reassembly transparent to the transport layer (TCP and UDP), which it is, except for possible performance
degradation. It is also possible for the fragment of a packet to again be fragmented (possibly more than
once). The information maintained in the IP header for fragmentation and reassembly provides enough
information to do this.

Recalling the IP header, the following fields are used in fragmentation. The identification field contains a
unique value for each IP packet that the sender transmits. This number is copied into each fragment of a
particular packet. The flags field uses one bit as the "more fragments" bit. This bit is turned on (is a 1) for
each fragment comprising a packet except the final fragment. The fragment offset field contains the
offset of this fragment from the beginning of the original packet. Thus providing a pointer as to the
position the fragment resides in original packet. Also, when a packet is fragmented the total length field
of each fragment is changed to be the size of that fragment.

Finally, one of the bits in the flags field is called the "don't fragment" bit. If this is turned on, IP will not
fragment the packet. In this case, if a “don’t fragment” packet encounters a network that it cannot
traverse (because of a smaller MTU) it will be discarded. The router that discarded the packet will send
an ICMP error message (fragmentation needed but don't fragment bit set) back to the originator. When an
IP packet is fragmented, each fragment becomes its own packet, with its own IP header, and is routed
independently of any other packets. This makes it possible for the fragments of a packet to arrive at the
final destination out of order, but there is enough information in the IP header to allow the receiver to
reassemble the fragments correctly.

Although IP fragmentation looks transparent, there is one facet that makes it somewhat inefficient: if one
fragment is lost the entire packet must be retransmitted. To understand why this happens, realize that IP
itself has no timeout and retransmission facility built in--that is the responsibility of higher layer

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 15

protocols. TCP performs timeout and retransmission although UDP does not. Some UDP applications
perform timeout and retransmission for themselves. When a fragment is lost that came from a TCP
segment, TCP will time out and retransmit the entire TCP segment, which corresponds to a new IP
packet. There is no way to resend only one fragment of a packet. Indeed, if the fragmentation was done
by an intermediate router, (and not the originating host), there is no way for the originating host to know
how the packet was fragmented.

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 16

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 11

When Host 1 talks to Host 8, fragmentation is required in order to traverse
Network 3’s X.25 link

Network 1 (Ethernet)
MTU = 1500 bytes

Host 1 H2 H3

Router 1

H3

H4

H5

R2

R3

Network 2 (FDDI)
MTU = 4352 bytes

Network 4 (Ethernet)
MTU = 1500 bytes

Network 3 (X.25)
MTU = 576 bytes

Host 8 H7 H6

IP Fragmentation/Reassembly Example -1

The sample internetwork in this slide accurately depicts the need for IP Fragmentation. X.25 networks
are still very common throughout Europe and other parts of the world, therefore this type of
fragmentation scenario is played out millions of times each day.

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 17

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 12

H1 R1 R2 R3 H8

ETH IP (1400) FDDI IP (1400) X.25 IP (556)

X.25 IP (288)

X.25 IP (556)

ETH IP (556)

ETH IP (288)

ETH IP (556)

Network 3Network 2Network 1 Network 4

IP Packet traverses Network 2 intact, but must be chopped into three
fragments (by Router 2) that are < Network 3’s MTU of 576 bytes

IP Fragmentation/Reassembly Example -2

The packet from Host 1 reaches Router 1 which proceeds to strip off the Ethernet frame and encapsulate
the IP packet within a FDDI frame for transport onto Network 2. Router 2 then strips off the FDDI frame,
reads the packet’s destination IP address (for Host 8) and determines that Network 3 is the correct (and in
this case only) route. Because the packet is larger than Network 3’s MTU, the packet is fragmented.
Finally, Router 3 strips off the X.25 frames, consults its routing table, and then encapsulates the
fragments within Ethernet frames for transport on Network 4. Notice that Router 3 does not attempt to
reassemble the fragments into the original packet—that is left up to the destination host.

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 18

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 13

• Offset field set to 0 for Frag 1 (indicates 1st Frag)
• Offset field set to 556 and 1112 for Frags 2 and 3

which indicates relative position in original packet)
• IP Header occupies remaining 20 bytes in all Frags,

which fills up the X.25 MTU of 576 bytes

• Each fragment has same ID as original packet
• More Fragments Flag set to 1 for Frags 1 and 2 but set to 0 (Last Fragment) for Frag 3

0 0

IP Fragmentation/Reassembly Example -3

Consider the following IP packet decode:

We used the ping –l command, to send
ICMP Echo packets that were larger
than our MTU of 1500 bytes
(Ethernet)—in this case 2000 bytes.

As a result, our local host’s IP Stack
was forced to Fragment the Echo
packets in order to route them
successfully to our destination host.

Notice in the IP header that the MF
(more fragments) flag is set to 1,
indicating that Fragmentation has
occurred. All fragments will have the
same Identification (17515), as well as
the same Source and Destination
address.

The Fragment Offset field for the next
fragment will indicate the position (in
bytes) in the original packet.

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 19

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 14

IP Reassembly -1

This slide shows how fragments can take different routes to the destination. Although the specification
recommends that fragments be reassembled at the final destination, some firewalls and intrusion detection
systems do either complete or virtual reassembly prior to forwarding them into the protected network.
This technique can be difficult to implement because of routing changes and protocol requirements. It
also can potentially open DOS vulnerabilities on the firewall itself—covered later in this workbook.
Many applications these days attempt to avoid fragmentation altogether by simply using the Do Not
Fragment flag in the IP header. With these applications, it is typical to initially disallow fragmentation
and then adjust if ICMP Type 3 Code 4 Messages are received (Destination Unreachable--Fragmentation
needed and DF flag set).

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 20

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 15

IP Reassembly -2
Fragments that match IP Header Identification, Source IP
Address, Destination IP Address, and Protocol fields belong
together and are reassembled.

Reassembled at destination machine, not at the intermediate
routers—WHY? Because packets may traverse different routes
to destination.

In our example, Host 8 checks all three fragments to make sure the appropriate IP Header fields are
identical (see first bullet of slide), and then reassembles the fragments into the original packet. It uses the
Fragment Offset field to put it together in the correct order.

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 21

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 16

IP Security Concerns
IP Address Spoofing

Fragmentation

• Firewall packet-filtering
problems

• Denial of Service on hosts

• Intrusion detection problems

• Obfuscating other attack
methods

Demo – IP Spoofing

IP Spoofing is a technique whereby intruders pretend to be sending data from an IP address other than
their own. The IP layer assumes that the source address on any IP packet it receives is the same IP
address as the system that actually sent the packet -- it does no authentication. Many higher level
protocols and applications also make this assumption, so it seems that anyone able to forge the source
address of an IP packet (called "spoofing" an address) could potentially get unauthorized privileges.

However, there are two catches. The first catch is that communication is likely to be one-way. The
remote host will send all replies to the spoofed source address -- not to the host actually doing the
spoofing. So, an attacker using IP spoofing is unlikely to see output from the remote system (unless they
have some other method of eavesdropping on the network between the other two hosts). The second
catch is that an attacker needs to use the correct TCP sequence numbers if they plan on establishing a
TCP connection with the attacked host (most common services, like Telnet, FTP, and r-commands use
TCP). The final ACK in a three-way handshake (see slide 27) must contain the other host's initial
sequence number (ISN), otherwise the connection cannot complete; because the ISN in the SYN+ACK
packet is sent to the real host, an attacker must get this ISN by some other method. If the attacker could
eavesdrop on the packets sent from the other host, he could see the ISN. Similarly, if the attacker was
unable to eavesdrop, but could somehow guess the other host's ISN, he can complete the connection and
conduct a one way conversation (this may be sufficient to initiate some other form of two-way
communication). Unfortunately for the TCP/IP community, methods to overcome both challenges in IP
Spoofing have been developed.

Some attacks manipulate the fragmentation feature of IP. Many firewalls including industry leader
Checkpoint Firewall-1, actually reassemble (they call it virtual packet-reassembly) all fragmented
datagrams so that the entire IP packet can be tested against its access rules before it is forwarded into the
protected network. As a result, if a firewall receives an IP fragment (IP Flag MF=1), it will hold this in
its memory buffer (or queue), waiting for all remaining fragments. Therefore, all a hacker need do is
flood the firewall with IP fragments and before long it will bog down and no longer be able to pass
legitimate packets. Some firewalls, like IP Tables in Linux, have tuned this operation to survive some
flooding. This feature is enabled through the CONFIG _IP _ALWAYS _DEFRAG option in the Linux
kernel, however it does impart a significant performance burden on the system and potentially the
protected network depending on its available bandwidth. Checkpoint has since provided a patch for the
vulnerability described, but as is often the case, many operational systems are inadequately patched.

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 22

A different DOS attack utilizing IP fragmentation is the Teardrop attack. This attack makes each
fragment look like the original IP packet except that it contains an offset field that says, for instance,
"This fragment is carrying bytes 600 through 800 of the original (non-fragmented) IP packet." The
Teardrop program creates a series of IP fragments with overlapping fragment offset fields. When these
fragments are reassembled at the destination host, some systems will crash, hang, or reboot.

Because of the intricacies of IP fragmentation, many intrusion detection systems have difficulty
identifying malicious packet streams. Like firewalls, IDS need to inspect a complete (non-fragmented
packet) so as to be accurate in comparing packets against their signature databases. Fragmentation is used
to hide or obfuscate malicious attacks and as a means of eluding access controls and detection.

So as you can see, IP fragmentation can be rather challenging for security professionals. Some
administrators disallow fragmented packets into their networks completely—which may cause access and
availability problems. IP fragmentation has been termed a “hackers dream” and a security officer’s
nightmare—the truth is probably somewhere in the middle for both.

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 23

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 17

ARP
Used by a sending host when it knows the IP address
of the destination but needs the Ethernet address

ARP is a broadcast protocol - every host on the
network receives the request

Each host checks the request against it’s IP address -
the right one responds

RFC 826—http://www.rfc-editor.org

Address Resolution Protocol (ARP) is a protocol for mapping an Internet Protocol address (IP address) to
a physical machine address that is recognized in the local network. For example, in IP Version 4, an
address is 32 bits long. In an Ethernet local area network, however, addresses (a.k.a. MAC addresses) for
attached devices are 48 bits long. A table, usually called the ARP cache, is used to maintain a correlation
between each MAC address and its corresponding IP address. ARP provides the protocol rules for
making this correlation and providing address conversion in both directions. There is also a Reverse ARP
(RARP) for host machines that don't know their IP address. RARP enables them to request their IP
address from the router's ARP cache.

How ARP Works:

When an incoming packet destined for a host machine on a particular local area network arrives at a
router, the router asks the ARP program to find a physical host or MAC address that matches the IP
address. The ARP program looks in the ARP cache and, if it finds the address, provides it so that the
packet can be converted to the right packet length and formatted and sent to the machine. If no entry is
found for the IP address, ARP broadcasts a request packet in a special format to all the machines on the
LAN. A machine that recognizes the IP address as its own replies. ARP updates the ARP cache for
future reference and then sends the packet to the MAC address that replied.

Since protocol details differ for each type of local area network, there are separate ARP Requests for
Comments (RFC) for Ethernet, ATM, Fiber Distributed-Data Interface, HIPPI, and other protocols.

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 24

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 18

ARP Demo – ARP/ARP Cache

In this example, Host Red sends a broadcast ARP request packet that is processed by every host on the
local network. Host Green sends an ARP reply packet directly back (unicast) to Host Red providing its
Ethernet address. All other hosts on the network simply drop Host Red’s original broadcast packet.

ARP Packet Format:

ARP Parameters (for Ethernet and Ipv4):

Hardware Type 1 = Ethernet 2 = IEEE 802 LAN

Protocol Type 2048 = IPv4 (0x0800)

Hardware Length (HLEN) 6 = (octets) for Ethernet/IEEE 802 LAN

Protocol Length (PLEN) 4 = (octets) for IPv4

Operation: 1 = Request 2 = Reply

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 25

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 19

ARP Security
Concerns

Security assumptions of switching

• ARP Table Poisoning (CERT Vulnerability Note VU#399355)

- ARP tables are typically updated dynamically

- Subject to forged entries

• Overflowing ARP Table Memory (flooding)

- No entry = broadcast on switches

- Static entries = administrative burden

Man in the middle and session hijacking
- Loss of confidentiality and integrity of data

- Potential for Denial of Service (DOS)

The assumption is often made that switches increase security since unicast packets are only seen by the
hosts they are destined for. Under normal circumstances this may be true, but there are many cases in
which this assumption is faulty. The first instance is on startup or when the switch has not as yet learned
the MAC address of a particular host. In this case the packet is typically forwarded out to all interfaces
on the switch (broadcast). Until the destination host responds, the switch has not cached the system’s
MAC address and therefore, doesn’t know which port to use to send the packet.

The second instance is when the switch’s buffer memory becomes full--due to either too many hosts
being attached to the switch (overloading its port density) or by being intentionally filled up as a result of
forged ARP packets. If the switch’s buffer is completely full, it can no longer write new entries into the
ARP cache. In this case, (as mentioned above) switches will typically send packets out every interface.
Additionally, a timer is placed on all new entries to the ARP cache, when this timer expires; the entry is
deleted from the ARP cache. The next time this machine’s MAC address is resolved it will be done so
through normal broadcast. It is possible to statically map MAC addresses to physical interfaces within
switches, however this can be an administrative burden.

ARP spoofing is even easier (in most cases) than IP spoofing—especially on non-switched networks.
Like IP, there is no authentication done by switches, routers, or end hosts. Therefore, it becomes trivial to
forge and transmit ARP packets, (for say the MAC address of the default gateway), thereby sending all
non-local traffic through the attacker’s system. This is commonly referred to as a man-in-the-middle.
The intruder can also run a packet capturing program (like sniffer or TCPDump) and learn the IP to MAC
correlations for all systems on the local network. With this information, the intruder can spoof the MAC
address of any local host, and then potentially receive all traffic intended for the victim. This can result in
a DOS for the spoofed host.

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 26

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 20

ICMP Functions
Is an error reporting and feedback mechanism for IP

Purpose is to provide feedback about problems in the
communication environment, not to make IP reliable

Uses basic support of IP as if it were a higher level protocol

2 kinds of messages: Queries and error reports

Can provide flow control, but again not guaranteed—like IP it’s
best effort only

RFC 792—http://www.rfc-editor.org
*Extended by RFCs 950, 1122, 1812, others

ICMP uses the basic support of IP as if it were a higher level protocol (like TCP or UDP), however,
ICMP is actually an integral part of IP, and must be implemented by every IP module.

ICMP messages are sent in several situations: for example, when a packet cannot reach its destination,
when a router does not have the buffering capacity to forward a packet, and when a router can direct the
host to send traffic on a shorter route.

As previously mentioned, the Internet Protocol is not designed to be absolutely reliable. The purpose of
these control messages is to provide feedback about problems in the communication environment, not to
make IP reliable. There are still no guarantees that a packet will be delivered or a control message will be
returned. Some packets may still be undelivered without any report of their loss. The higher level
protocols that use IP must implement their own reliability procedures if reliable communication is
required.

The ICMP messages typically report errors in the processing of packets. To avoid the infinite regress of
messages about messages etc., no ICMP messages are sent about ICMP messages. Also ICMP messages
are only sent about errors in handling the first fragment of fragmented packets.

For more information, see: http://www.networkcomputing.com/netdesign/1107icmp1.html

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 27

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 21

4 bit
Version

4 bit
Header
Length

8-bit type of service
 (TOS)=0

16-bit total length (in bytes)

16-bit identification
3 bit

Flags 13-bit Fragment Offset

8-bit time to live
(TTL)

8-bit protocol=1
(ICMP)

16-bit header checksum

32-bit source IP address

Options (if any)

32-bit destination IP address

Type Code Checksum

20
bytes

4 bytes

ICMP data (depending on the type of message)IP Data
Field

0 8 16 314

• ICMP messages are sent in IP packets.
• The protocol field will always be 1 (indicates ICMP)
• The IP data field will contain the actual ICMP message

The ICMP Packet
Demo – ICMP Capture

ICMP messages are sent using the basic IP header. The first octet of the data portion of the
packet is an ICMP type field; the value of this field determines the format of the remaining data.

Consider the following ICMP packet
decode:

Notice the following:

The IP Protocol field = 1 for ICMP

The ICMP Type field = 8 for Echo
The ICMP Code = 0 (no code exists)

The Sequence number is a unique
identifier for each Echo and Echo
Reply session. In this case 50432
corresponds to this echo request packet
and will be indentical in the
subsequent Echo Reply packet only.

For data, the Ping program simply
sends enough ASCII characters (a-w)
to fill the standard packet size.

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 28

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 22

11 Original Message Types (from RFC 792)
• Now extended to more than 30 by other RFCs and

experimental projects

• Common implementations
- Ping command utilizes ICMP Types 8 (Echo) and 0 (Echo

Reply)

- When IP TTL expires, ICMP Type 11 packet is sent to source

ICMP Message Types

11 = Time Exceeded
12 = Parameter Problem
13 = Timestamp
14 = Timestamp Reply
15 = Information Request
16 = Information Reply

0 = Echo Reply
3 = Destination Unreachable
4 = Source Quench
5 = Redirect
8 = Echo

Common ICMP Message Types and their descriptions:

ICMP Echo Reply (Ping): The most frequently used ICMP message is popularly implemented in a
program called ping. It provides feedback to the sender on the state of IP connectivity and is often used as
a debugging tool. Ping makes use of the ICMP ECHO REQUEST and ECHO REPLY parameters.

ICMP Redirects: The ICMP redirect message is sent by a gateway to the host, and instructs the host to
use a different route when the router detects that its route is not as optimal as that of another router on the
same network segment. If the gateway detects a better route for the IP datagram, it will send the host a
redirect message with the address of the preferred gateway. TCP/IP will then send all traffic to this new
IP address for another subnet.

ICMP Source Quench: IP provides a very basic form of flow control with the ICMP source quench
message. The source quench message informs the originating host that the gateway or receiving host is
being overrun and can’t keep up with the traffic. The originating host then lowers the rate at which it
sends datagrams to the receiving host, until it stops receiving "source quench" messages. After some
time, the originating host may then gradually increase the rate at which it sends out datagrams.

ICMP Time Exceeded: Time Exceeded error messages are used to indicate that a forwarding or
reassembly operation took too long to complete and that the reporting device is discarding the data. In
order to provide more-detailed reporting, the Time Exceeded message provides two different Codes:

Time-to-Live Exceeded in Transit: An IP Packet’s TTL has expired

Fragment Reassembly Time Exceeded: The IP’s timer for reassembling fragments expired

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 29

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 23

ICMP Code Field

Used in conjunction with and further describes TYPE field
Example: Destination Unreachable Message

TYPE: 3 Code: 0 = net unreachable (sent by routers)

1 = host unreachable (sent by routers)

2 = protocol unreachable (sent by hosts)

3 = port unreachable (sent by hosts)

And 12 others for this Type alone!

Some message types have no corresponding code
Example: Echo (8) and Echo Reply (1)

ICMP messages your computer can send or receive.

ICMP Messages with general message type, specific message code, and
whether the message is a query or a response to a network event (error
report).

Type Code Description Query/Error

0 0 Echo reply Q

3 Destination Unreachable:

 0 Network Unreachable E

 1 Host Unreachable E

 2 Protocol Unreachable E

 3 Port Unreachable E

 4 Fragmentation needed and DF (flag) set E

 5 Source Route Failed E

 6 Destination Network Unknown E

 7 Destination Host Unknown E

 8 Source Host Isolated (obsolete) E

 9 Destination Network Prohibited E

 10 Destination Host Prohibited E

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 30

Type Code
Description

Query/Error

 11 Network Unreachable for TOS E

 12 Host Unreachable for TOS E

 13 Prohibited by Filtering E

 14 Host Precedence Violation E

 15 Precedence Cutoff in Effect E

4 0 Source Quench E

5 Redirect:

 0 Redirect for Network E

 1 Redirect for Host E

 2 Redirect for TOS and Network E

 3 Redirect for TOS and Host E

8 0 Echo Request Q

9 0 Router Advertisement Q

10 0 Router Solicitation Q

11 Time Exceeded:

 0 TTL Exceeds 0 During Transit E

 1 TTL Exceeds 0 During Reassembly E

12 Parameter Problem:

 0 IP Header Bad E

 1 Required Option Missing E

13 0 Timestamp Request Q

14 0 Timestamp Reply Q

15 0 Information Request (obsolete) Q

16 0 Information Request Reply (obsolete) Q

17 0 Address Mask Request Q

18 0 Address Mask Reply Q

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 31

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 24

ICMP Security Concerns
Information gathering/scanning
• Network mapping

• Operating system fingerprinting

Denial Of Service
• Forged ICMP packets

• Nuke (Ping of Death)

• Distributed flooding

Sort of a
“what keeps you up
at night.”

ICMP is widely used for Information Gathering and Scanning. It is commonplace to allow many
different ICMP Type messages into and out of private networks. One of the most common is simple
Echo and Echo Reply as implemented by the Ping program. There are multitudes of automated “ping
sweep” type applications available on the Internet that map networks based on a specified range of IP
addresses. These scanning techniques can potentially reveal the range of IP addresses within internal
networks, what access control lists are being applied on routers and firewalls, and what the MTUs are on
internal networks.

ICMP can also be used to determine which operating system is running—this is call OS Fingerprinting.
One technique described by researcher Ofir Arkin1 shows that Microsoft Windows hosts can be
fingerprinted by sending invalid code fields inside of ICMP Timestamp Request packets. The manner in
which the Windows systems respond to these requests are unique when compared to other operating
systems. Arkin describes other similar techniques for fingerprinting Linux, Solaris and several other
Unix-based systems.

ICMP packets do not include any authentication method for the recipient of the message. A clever hacker
can forge ICMP packets and cause havoc in an unprepared network. The two greatest threats from
malicious ICMP packets are denial-of-service attacks and impersonation or man-in-the-middle attacks. A
forged destination-unreachable packet can isolate a computer from necessary services. Echo Request has
been used by hackers to crash computers with a naive implementation of the ICMP protocols. Once a
computer that performs an important service (such as a DNS server, file server, or web server) is out of
the way, an ICMP redirect packet can point unwitting victims to the hacker's computer, where the hacker
can accept authentication information (usernames, passwords, etc.).

Denial of service attacks primarily use either the ICMP "Time exceeded" or "Destination unreachable"
messages. The "Time exceeded" message indicates that the Time-To-Live field in the IP header has
expired; this can normally be caused by routing loops or trying to reach a host that is extremely distant.
"Destination unreachable" messages can have several meanings (based on the ICMP Code field), but all
basically indicate that packets cannot successfully be sent to the desired host. Both of these ICMP
messages can cause a host to immediately drop a connection (this is the desired result if the ICMP

1 http://www.sys-security.com/archive/papers/ICMP_Scanning_v3.0.pdf

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 32

message is legitimate). An attacker can make use of this by simply forging one of these ICMP messages,
and sending it to one or both of the communicating hosts. Their connection will then be broken.

As mentioned above, ICMP messages can be used to intercept packets. The ICMP "Redirect" message is
commonly used by routers when a host has mistakenly assumed the destination is not on the local
network (and is thus attempting to send data allowed by the IP specification. The oversize packet is then
sent to an unsuspecting systemthe packet via the gateway to the intended destination). If an attacker
forges an ICMP "Redirect" message, it can cause another host to send packets for certain connections
through the attacker's host.

The Ping of Death (sometimes referred to as Nuke attacks) uses a ping system utility to create an IP
packet that exceeds the maximum 65,536 bytes of. This attack is obfuscated to a degree, because it
requires that the packet be fragmented many times—remember the MTU for Ethernet is 1500 bytes. The
results are varied but many systems may crash, hang, or reboot when they receive such a maliciously
crafted packet2.

2 http://www.insecure.org/sploits/ping-o-death.html

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 33

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 25

How can processes on different systems get the right messages?

Ports are numeric locators that enable messages to be de-
multiplexed to proper process (Service)

Connections are typically established using well-known ports

• Well known ports 1 – 1023

• Registered ports 1024 – 49151

• Dynamic ports 49152 – 65535

Common well-known ports:
FTP = 20, 21 Telnet = 23 SMTP = 25

DNS = 53 TFTP = 69 HTTP = 80

POP3 = 110 BGP = 179 HTTPS = 443

Service Ports

http://www.iana.org/assignments/port-numbers

Higher-layer applications are referred to by a port identifier in TCP/UDP messages. The port identifier
and IP address together form a socket, and the end-to-end communication between two hosts is uniquely
identified on the Internet by the concatenating the source port, source address, destination port,
destination address.

A 16-bit binary number specifies individual Port numbers. Port numbers in the range 0-1023 are called
Well Known Ports. These port numbers are assigned to the server side of an application and, on most
systems, can only be used by processes with a high level of privilege (such as root or administrator). Port
numbers in the range 1024-49151 are called Registered Ports, and these are numbers that have been
publicly defined as a convenience for the Internet community to avoid vendor conflicts. Server or client
applications can use the port numbers in this range. The remaining port numbers, in the range 49152-
65535, are called Dynamic and/or Private Ports and can be used freely by any client or server.

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 34

Some well-known port numbers include:

Port # Common
Protocol

Service Port # Common
Protocol

Service

7 TCP echo 80 TCP http

9 TCP discard 110 TCP pop3

13 TCP daytime 111 TCP sunrpc

19 TCP chargen 119 TCP nntp

20 TCP ftp-control 123 UDP ntp

21 TCP ftp-data 137 UDP netbios-ns

23 TCP telnet 138 UDP netbios-dgm
25 TCP smtp 139 TCP netbios-ssn

37 UDP time 143 TCP imap

43 TCP whois 161 UDP snmp

53 TCP/UDP dns 162 UDP snmp-trap

67 UDP bootps 179 TCP bgp

68 UDP bootpc 443 TCP https (http/ssl)

69 UDP tftp 520 UDP rip

70 TCP gopher 1080 TCP socks

79 TCP finger 33434 UDP traceroute

A complete list of port numbers that have been assigned can be found in IANA's list of
Port Numbers: http://www.iana.org/assignments/port-numbers. An implementation-
specific list of supported port numbers and services can be found in the services file,
generally found in the /etc (Linux/Unix), c:\windows (Windows 9x, ME), or
c:\winnt\system32\drivers\etc (Windows NT, 2000) directory.

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 35

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 26

TCP Characteristics

TCP is a connection-oriented, end-to-end reliable protocol. TCP provides for reliable inter-process
communication between pairs of processes in host computers attached to distinct but interconnected
computer communication networks. Very few assumptions are made as to the reliability of the
communication protocols below the TCP layer. TCP assumes an unreliable packet service from the lower
level protocols—like IP which TCP utilizes. In principle, TCP should be able to operate above a wide
spectrum of communication systems ranging from hard-wired connections to packet-switched or circuit-
switched networks. The continuous data stream flowing down from various applications (requesting
network communications) is broken up into chunks called segments.

TCP is able to transfer a continuous stream of octets (bytes) in each direction between its users by
packaging some number of octets into segments for transmission through the network. In general, TCP
decides when to block and forward data through a rather elegant strategy called sliding windows.

TCP must recover from data that is damaged, lost, duplicated, or delivered out of order by IP. TCP
overcomes this by assigning a sequence number to each octet transmitted, and requiring a positive
acknowledgment (ACK) from the other end. If the ACK is not received within a timeout interval, the
data is retransmitted. On the receiver, the sequence numbers are used to correctly order segments that
may be received out of order and to eliminate duplicates. Damage is handled by adding a checksum to
each segment transmitted, checking it at the receiver, and discarding damaged segments.

TCP provides a means for the receiver to govern the amount of data sent by the sender (flow control). It
utilizes the sliding windows technique by returning a "window size" with every ACK indicating a range
of acceptable sequence numbers beyond the last segment successfully received. The window indicates an
allowed number of octets that the sender may transmit before receiving further permission.

To allow for many processes within a single Host to use TCP communication facilities simultaneously,
TCP uses assigned port numbers. This port is combined with the network address from IP to form a
socket. A pair of sockets uniquely identifies each connection. That is, a socket may be simultaneously
used in multiple connections. The reliability and flow control mechanisms described above require that
TCP initialize and maintain certain status information for each data stream. The combination of this
information, including sockets, sequence numbers, and window sizes, is called a connection.

When two applications wish to communicate, their TCP's must first establish a connection (initialize the
status information on each side). When their communication is complete, the connection is terminated or

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 36

closed to free the resources for other uses. Since connections must be established between unreliable
hosts and over the unreliable internet protocol, a handshake mechanism with sequence numbers is used to
avoid erroneous initialization of connections.

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 37

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 27

TCP Segment Format
Run pointer over each box to reveal descriptions

The TCP header fields:

Source Port and Destination Port: Identify the source and destination ports to identify the end-to-end
connection and higher-layer application.

Sequence Number: Contains the sequence number of this segment's first data byte in the overall
connection byte stream; since the sequence number refers to a byte count rather than a segment count,
sequence numbers in contiguous TCP segments are not numbered sequentially.

Acknowledgment Number: Used by the sender to acknowledge receipt of data; this field indicates the
sequence number of the next byte expected from the receiver.

Data Offset: Points to the first data byte in this segment; this field, then, indicates the segment header
length.

Control Flags: A set of flags that control certain aspects of the TCP virtual connection. The flags
include:

• Urgent Pointer Field Significant (URG): When set, indicates that the current segment
contains urgent (or high-priority) data and that the Urgent Pointer field value is valid.

• Acknowledgment Field Significant (ACK): When set, indicates that the value contained in
the Acknowledgment Number field is valid. This bit is usually set, except during the first
message during connection establishment.

• Push Function (PSH): Used when the transmitting application wants to force TCP to
immediately transmit the data that is currently buffered without waiting for the buffer to fill;
useful for transmitting small units of data.

• Reset Connection (RST): When set, immediately terminates the end-to-end TCP connection.

• Synchronize Sequence Numbers (SYN): Set in the initial segments used to establish a
connection, indicating that the segments carry the initial sequence number.

• Finish (FIN): Set to request normal termination of the TCP connection in the direction this
segment is traveling; completely closing the connection requires one FIN segment in each
direction.

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 38

Window: Used for flow control, contains the value of the receive window size which is the number of
transmitted bytes that the sender of this segment is willing to accept from the receiver.

Checksum: Provides rudimentary bit error detection for the segment (including the header and data).

Urgent Pointer: Urgent data is information that has been marked as high-priority by a higher layer
application; this data, in turn, usually bypasses normal TCP buffering and is placed in a segment between
the header and "normal" data. The Urgent Pointer, valid when the URG flag is set, indicates the position
of the first octet of nonexpedited data in the segment.

Options: Used at connection establishment to negotiate a variety of options; maximum segment size
(MSS) is the most commonly used option and, if absent, defaults to an MSS of 536. Another option is
Selective Acknowledgement (SACK), which allows out-of-sequence segments to be accepted by a
receiver. The IANA maintains a list of all TCP Option Numbers: http://www.iana.org/assignments/tcp-
parameters.

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 39

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 28

TCP “Three-Way Handshake”

Active participant (client)

Passive participant (server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,
Acknowledgment = x + 1

ACK, Acknowledgment = y + 1

For a connection to be established or initialized, the two TCPs (each host) must synchronize on each
other's initial sequence numbers. This is done in an exchange of connection establishing segments
carrying a flag bit called "SYN" (for synchronize) and the initial sequence numbers. As shorthand,
segments carrying the SYN bit are also called "SYNs". Hence, the solution requires a suitable
mechanism for picking an initial sequence number and a slightly involved handshake to exchange the
ISN's.

The synchronization requires each side to send its own initial sequence number and to receive a
confirmation of it in acknowledgment from the other side. Each side must also receive the other side's
initial sequence number and send a confirming acknowledgment.

 1) A --> B SYN my sequence number is X
 2) A <-- B ACK your sequence number is X
 3) A <-- B SYN my sequence number is Y
 4) A --> B ACK your sequence number is Y

The simplest three-way handshake is shown in figure 1 below. The figures should be interpreted in the
following way. Each line is numbered for reference purposes. Right arrows (-->) indicate departure of a
TCP segment from TCP A to TCP B, or arrival of a segment at B from A. Left arrows (<--), indicate the
reverse. Comments appear in parentheses. TCP states represent the state AFTER the departure or arrival
of the segment (whose contents are shown in the center of each line). Segment contents are shown in
abbreviated form, with sequence number, control flags, and ACK field. Other fields such as window,
addresses, lengths, and text have been left out in the interest of clarity.

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 40

 TCP A TCP B

 1. CLOSED LISTEN

 2. SYN-SENT --> <SEQ=100><CTL=SYN> --> SYN-RECEIVED

 3. ESTABLISHED <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED

 4. ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK> --> ESTABLISHED

 5. ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK><DATA> --> ESTABLISHED

 Basic 3-Way Handshake for Connection Synchronization

 Figure 1.

In line 2 of figure 1, TCP A begins by sending a SYN segment indicating that it will use sequence
numbers starting with sequence number 100. In line 3, TCP B sends a SYN and acknowledges the SYN
it received from TCP A. Note that the acknowledgment field indicates TCP B is now expecting to hear
sequence 101, acknowledging the SYN, which occupied sequence 100.

At line 4, TCP A responds with an empty segment containing an ACK for TCP B's SYN; and in line 5,
TCP A sends some data. Note that the sequence number of the segment in line 5 is the same as in line 4
because the ACK does not occupy sequence number space (if it did, we would wind up ACKing ACK's!)
[RFC 793]

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 41

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 29

URG: Urgent pointer field significant
ACK: Acknowledgment field significant
PSH: Push function
RST: Reset the connection
SYN: Synchronize sequence numbers
FIN: No more data from sender

TCP Flags—Why so Important?

Central to defining “State” of connection

Key to packet filtering on firewalls

Frequently exploited…
• Therefore, if nothing else--know TCP flags and their

functions well!

Demo – TCP Packet Capture

Understanding what TCP flags are and how they are implemented is important to securing your
networked information. As introduced on the previous slide, flags are used in part for identifying the
current state of a TCP connection between 2 hosts. Remember, TCP connections involve synchronizing
the connection (SYN), transmitting the data, and then finishing, or closing the connection (FIN). As
requests are made between systems, acknowledgements (ACK) are transmitted back and forth to assure
that both sides of the connection agree on the state of the connection.

Most static, and particularly, dynamic packet filtering implementations (applying access rules to
individual packets—which is usually done on firewalls) utilize TCP flags to enforce access control
policies. Because of this, it is important for administrators to understand how firewalls will filter packets
based on which flags are set. This information will be covered in greater detail later in the course during
the Firewalls module.

There exists, as part of the TCP specification, a level of interdependence between TCP Flags. An
example of this is when a client sends an initial SYN segment. The client expects to receive a SYN/ACK
segment back from the server and because it doesn’t want to have to wait forever for this, it starts a timer.
This is both good and bad. It’s good because the client will not wait indefinitely for the connection state
to change, however this can be exploited—typically with flooding the server with connection requests
(see SYN floods next slide). There are other similar instances in the lifecycle of various TCP connection
states that have no timer established. This can be a problem because that particular state can remain
waiting for transition indefinitely.

As introduced above, TCP connections go through numerous state changes. These states are listed and
briefly described below and are illustrated in the inserted diagrams. A complete explanation of each state
is beyond the scope of this course, however it is highly recommended that security professionals
understand this—refer to RFC 793.

The following is excerpted from RFC 793: A connection progresses through a series of states during its
lifetime. The states are: LISTEN, SYN-SENT, SYN-RECEIVED, ESTABLISHED, FIN-WAIT-1, FIN-
WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT, and the fictional state CLOSED.
Briefly the meanings of the states are:

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 42

LISTEN - represents waiting for a connection request from any remote TCP and port.

SYN-SENT - represents waiting for a matching connection request after having sent a connection
request.

SYN-RECEIVED - represents waiting for a confirming connection request acknowledgment after having
both received and sent a connection request.

ESTABLISHED - represents an open connection, data received can be delivered to the user. The normal
state for the data transfer phase of the connection.

FIN-WAIT-1 - represents waiting for a connection termination request from the remote TCP, or an
acknowledgment of the connection termination request previously sent.

FIN-WAIT-2 - represents waiting for a connection termination request from the remote TCP.

CLOSE-WAIT - represents waiting for a connection termination request from the local user.

CLOSING - represents waiting for a connection termination request acknowledgment from the remote
TCP.

LAST-ACK - represents waiting for an acknowledgment of the connection termination request
previously sent to the remote TCP (which includes an acknowledgment of its connection termination
request).

TIME-WAIT - represents waiting for enough time to pass to be sure the remote TCP received the
acknowledgment of its connection termination request.

CLOSED - represents no connection state at all.

 TCP Client Connection Lifecycle TCP Server Connection Lifecycle

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 43

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 30

TCP Security Concerns
Port scanning

Denial of Service via SYN Floods, etc.

Sequence number prediction I’M THINKING
OF A NUMBER

BETWEEN 1
AND 2. . .

Port Scanning is one of the most popular reconnaissance techniques attackers use to discover services
they can break into. All machines connected to the Internet may be running services that listen at well-
known and not so well-known ports. By port scanning the attacker finds which ports are available (i.e.,
being listened to by a service). Essentially, a port scan consists of sending a message to each port, one at
a time. The kind of response received indicates whether the port is used and can therefore be probed
further for weakness. Two TCP scanning methods are described below:

SYN scanning: This technique is also called half-open scanning, because a TCP connection is not
completed. A SYN packet is sent (as if we are going to open a connection), and the target host responds
with a SYN+ACK, this indicates the port is listening, and an RST indicates a non- listener. The server
process is never informed by the TCP layer because the connection did not complete—that is to say, the
client didn’t send the final ACK to the server to complete the three-way handshake.

FIN scanning: The typical TCP scan attempts to open connections (at least part way). Another
technique sends erroneous packets at a port, expecting that open listening ports will send back different
error messages than closed ports. The scanner sends a FIN packet, which should close a connection that
is open. Closed ports reply to a FIN packet with a RST. Open ports, on the other hand, ignore the packet
in question. This is required TCP behavior. If no service is listening at the target port, the operating
system will generate an error message. If a service is listening, the operating system will silently drop the
incoming packet. Therefore, silence indicates the presence of a service at the port.

The same TCP behavior described in SYN scanning is exploited in another (very popular!) attack called
SYN flooding. The potential for abuse arises at the point where the server system has sent an
acknowledgment (SYN-ACK) back to client but has not yet received the ACK message. The server has
built in its system memory a data structure (a buffer or queue) describing all pending connections.

This data structure is of finite size, and it can be made to overflow by intentionally creating too many
partially-open connections. Creating half-open connections is easily accomplished with IP spoofing. The
attacking system sends SYN messages to the victim server system; these appear to be legitimate but in
fact reference a client system that is unable to respond to the SYN-ACK messages. This means that the
final ACK message will never be sent to the victim server system. The half-open connections data
structure on the victim server system will eventually fill; then the system will be unable to accept any new
incoming connections until the table is emptied out. Normally there is a timeout associated with a

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 44

pending connection, so the half-open connections will eventually expire and the victim server system will
recover. However, the attacking system can simply continue sending IP-spoofed packets requesting new
connections faster than the victim system can expire the pending connections. In most cases, the victim
of such an attack will have difficulty in accepting any new incoming network connection. In some cases,
the system may exhaust memory, crash, or be rendered otherwise inoperative. The location of the
attacking system is obscured because the source addresses in the SYN packets are often implausible.
When the packet arrives at the victim server system, there is virtually no way to determine its true source.
Similar attacks are employed with the FIN flag set—which makes static packet filtering notably
ineffective. The latest abuses of this vulnerability are distributed flooding attacks—where many hacked
systems act as the source of the flooding.

TCP sequence number prediction is a well-known vulnerability that was first described in 1985.

The TCP sequence number is a 32-bit counter. In order to distinguish between different connections
between the same sender and receiver, it is important that the sequence numbers do not start at 0 or any
other fixed number each time a connection is opened. Hence, it is important that the first byte of data
from the sender to the receiver is using a random sequence number. Many current implementations
increment the sequence number by a finite amount every second.

More precisely, RFC 793 specifies that the 32-bit counter be incremented by 1 in the low-order position
about every 4 microseconds. Instead, Berkeley-derived Unix kernels increment it by a constant every
second, and by another constant for each new connection. Thus, if you open a connection to a machine,
you know to a very high degree of confidence what sequence number it will use for its next connection.
And therein lies the attack [RFC 1948]. Many vendors have changed the algorithms employed in their
TCP/IP implementations to defend against this, however recent research has called into question whether
or not these mitigation strategies are effective.3 Studies have been done that analyze the susceptibility of
specific operating systems to sequence number prediction.4 Another concern is how effectively faulty
TCP/IP stacks are patched. For Windows 95 and 98, Microsoft utilized the TCP/IP stack implementation
directly from the open source code of BSD 4.4. This code was patched by the original BSD developers,
however, Microsoft had to develop their own patches for their stack—which may or may not have been a
priority—because of the closed (proprietary) nature of the software.

3 http://www.kb.cert.org/vuls/id/498440

4 http://razor.bindview.com/publish/papers/tcpseq.html

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 45

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 31

UDP Characteristics

UDP is one of the two main protocols to reside on top of IP. It offers service to the user's network
applications. Example network applications that use UDP are: Network File System (NFS) and Simple
Network Management Protocol (SNMP). The service is little more than an interface to IP.

UDP is a connectionless packet delivery service that does not guarantee delivery. UDP does not maintain
an end-to-end connection with the remote UDP module; it merely pushes the packet out on the net and
accepts incoming packets off the net. UDP adds two values to what is provided by IP. One is the
multiplexing of information between applications based on port number. The other is a checksum to
check the integrity of the data and header information.

The path of communication between an application and UDP is through UDP ports. These ports are
numbered, beginning with zero. An application that is offering service (the server) waits for messages to
come in on a specific port dedicated to that service. The server waits patiently for any client to request
service. For instance, the TFTP server, always waits (listens) on port 69. There can be only one TFTP
service per computer (unless a TFTP server has been configured to use a non-standard port number)
because there is only one UDP port number 69. This port number is well known; it is a fixed number, an
internet assigned number. If a TFTP client wants service, it sends its request to UDP port number 69 on
the destination computer.

When an application sends data out through UDP it arrives at the far end as a single unit. For example, if
an application does 5 writes to the UDP port, the application at the far end will do 5 reads from the UDP
port. Also, the size of each write matches the size of each read. UDP preserves the message boundary
defined by the application. It never joins two application messages together, or divides a single
application message into parts.

An incoming IP packet with an IP header type field indicating "UDP" is passed up to the UDP module by
IP. When the UDP module receives the UDP packet from IP it examines the UDP checksum. If the
checksum field value is zero (16 off bits), it means that checksum was not calculated by the sender and
can be ignored. UDP checksumming was designed to be optional for performance reasons. If Ethernet,
which has a robust error checking method, is the only underlying network between two communicating
systems; then you may have UDP option out of performing checksums. It is however, recommended that
UDP checksum generation always be enabled because changes in routing tables can send packets over
less reliable media access protocol implementations. If UDP performs a checksum at both ends and the

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 46

packet contains no errors, the destination port number is examined and if an application is bound to that
port, the message is queued for the application to read. If the checksum is performed and errors are
detected, the packet is discarded. If no checksum is performed, than UDP simply queues the data (which
may have errors in it) for the application. Additionally, if the incoming UDP packets arrive faster than
the application can read them, thereby overflowing the queue’s maximum value, UDP packets are
discarded. UDP will continue to discard packets until there is space in the queue.

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 47

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 32

UDP Packet Format

Destination PortSource Port

Application data

0 16 31

ChecksumLength

Field Purpose
Source port 16-bit port number identifying originating application
Destination port 16-bit port number identifying destination application
Length Length of UDP datagram (UDP header + data)
Checksum Checksum of IP pseudo header, UDP header, and data

Demo – UDP Packet Capture

The fields of a UDP packet are:

Source Port: Identifies the UDP port being used by the sender of the packet; use of this field is optional
in UDP and may be set to 0.

Destination Port: Identifies the port used by the packet receiver.

Length: Indicates the total length of the UDP packet including data.

Checksum: Provides rudimentary bit error detection for the packet (including the header and data)

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 48

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 33

UDP Security Concerns
Port Scanning

Packet Filtering can be a challenge

• Less granularity than with TCP

DoS via Simple UDP services

• Echo and Chargen in Smurfing

Port scanning usually means scanning for TCP ports, which are connection-oriented and therefore give
good feedback to the attacker. UDP responds in a different manner. In order to find UDP ports, the
attacker generally sends empty UDP datagrams. If the port is listening, the service should send back an
error message or ignore the incoming datagram. If the port is closed, then most operating systems send
back an "ICMP Port Unreachable" message. Thus, you can find out if a port is NOT open, and by
exclusion determine which ports are open. Neither UDP packets, nor the ICMP errors are guaranteed to
arrive, so UDP scanners of this sort must also implement retransmission of packets that appear to be lost
(or you will get a bunch of false positives). Also, this scanning technique is slow because of
compensation for machines that implement the suggestions of RFC 1812 and limit ICMP error message
rate. For example, the Linux kernel limits destination unreachable message generation to 80 per 4
seconds, with a 1/4 second penalty if that is exceeded.

Some people think UDP scanning is pointless -- not so. Consider the Solaris rpcbind hole (Sun
Microsystems Security Bulletin Bulletin Number: #00167, April 8, 1998). Rpcbind can be found hiding
on an undocumented UDP port somewhere above 32770. So it doesn't matter that port 111 (SUN Remote
Procedure Call) is blocked by the firewall. But can you find which of the more than 30,000 high ports it
is listening on? With a UDP scanner you can! There are other applications that operate similarly.

Packet filtering UDP packets on firewalls is not as eloquent or complex as with TCP. Because UDP is
connectionless and therefore devoid of any “stateful” information, packet filters are forced to be very
black and white with how they enforce access control policies. Non-Stateful firewalls can basically deny
or permit UDP traffic based on port number alone—that is the extent of granularity. As a result, some
attackers favor using UDP with either randomly generated dynamic port numbers, or static ports between
49152 and 65535.

Some UDP ports and their assigned services are particularly vulnerable to DOS attacks. By sending a
crafted UDP packet to a host that is listening on UDP port 19 (chargen) with a source port of UDP 7
(echo) you’ll start a flood of network traffic that will grow exponentially. Chargen or Character
Generator is a testing service that generates and sends all ASCII characters to the requester. UDP Echo
(not to be confused with ICMP Echo) simply sends all of the data it receives back to the requester. The
number of connections increases as each service tries to complete its purpose—hence, the floodgates are
opened to another form of DOS flooding.

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 49

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 34

Review Questions
1. What entity sponsored the development of TCP/IP?

2. Name one security issue involving IP fragmentation.

3. Name two security issues involving ARP.

4. What is the function of ICMP?

5. What is the main difference between UDP and TCP?

6. Which TCP flags are set during step two of the three-way
handshake?

1. What entity sponsored the development of TCP/IP

Answer: DARPA

2. Name 1 security issue involving IP fragmentation.
Answer: Can confuse firewalls and Intrusion Detection Systems

3. Name 2 security issues involving ARP.
Answer: Man-in-the-Middle attacks, ARP Spoofing and Flooding

4. What is the function of ICMP?
Answer: To report errors in the communications environment of IP and to provide a means
of performing network diagnostics and testing

5. What is the main difference between UDP and TCP?
Answer: UDP is connectionless whereas TCP is connection-oriented

6. Which TCP flags are set during step 2 of the Three-way Handshake?
Answer: SYN and ACK

Student Workbook – Module 5: TCP/IP Security

© 2002 Carnegie Mellon University Page 50

© 2002 Carnegie Mellon University Module 5: TCP/IP SECURITY - slide 35

Summary
TCP/IP history

TCP/IP architecture

IP

ARP

ICMP

Ports

TCP

UDP

Bibliography:

[Cisco] Understanding TCP/IP Available at:
http://www.cisco.com/univercd/cc/td/doc/product/iaabu/centri4/user/scf4ap1.htm

[ISOC 2001] A Brief History of the Internet Available at:
http://www.isoc.org/internet/history/brief.shtml

RFC 768 UDP Available at: http://www.rfc-editor.org/rfc/rfc768.txt

RFC 791 IP Available at: http://www.rfc-editor.org/rfc/rfc791.txt

RFC 792 ICMP Available at: http://www.rfc-editor.org/rfc/rfc792.txt

RFC 793 TCP Available at: http://www.rfc-editor.org/rfc/rfc793.txt

RFC 826 ARP Available at: http://www.rfc-editor.org/rfc/rfc826.txt

[Used throughout] Comer, Douglas E. Internetworking with TCP/IP, Vol. 1: Principles, Protocols,
and Architecture. 3rd edition. New York:” Prentice-Hall, 1995.

[Used throughout] TCP/IP Illustrated, Vol. 1: The Protocols. Richard Stevens Reading, MA:
Addison-Wesley, 1994.

[Used throughout] "TCP/IP Security," Chris Chambers, Justin Dolske, and Jayaraman Iyer (Department
of Computer and Information Science, Ohio State University):
http://www.linuxsecurity.com/resource_files/documentation/tcpip- security.html

[Used throughout] Security Problems in the TCP/IP Protocol Suite," Bellovin, S. M. (Computer
Communication Review, April 1989): http://www.ja.net/CERT/Bellovin/TCP-IP_Security_Problems.html

[whatis 2000] What is ARP? Available at:
http://whatis.techtarget.com/definition/0,,sid9_gci213780,00.html

