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Instructional Objectives -1
Summarize the history of TCP/IP

Describe the layered architecture of TCP/IP

Describe characteristics of the Internet Protocol (IP)

Identify and describe fields within an IP Header

Describe IP Fragmentation 

Identify security concerns associated with IP

Describe the primary function of the Address Resolution Protocol
(ARP)

Identify security concerns associated with ARP

Describe the primary functions of the Internet Control Message 
Protocol (ICMP)

 
Some background knowledge of data networking and the TCP/IP suite is assumed for this portion of the 
course.  Therefore this module does not attempt to provide a complete explanation of the entire protocol 
suite.  Rather, it focuses on the protocols most prevalent in the fields of networked systems survivability 
and information security. 
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Instructional Objectives -2
Identify common ICMP TYPE and Code fields and describe common 
uses

Identify security concerns associated with ICMP

Describe the function of Service Ports

Describe characteristics of the Transmission Control Protocol (TCP) 

Identify and describe fields within a TCP Header

Identify security concerns with TCP

Describe characteristics of the User Datagram Protocol (UDP)

Identify and describe fields within a UDP Header

Identify security concerns associated with UDP
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Overview
TCP/IP history

TCP/IP architecture

IP

ARP

ICMP

Ports

TCP

UDP
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TCP/IP Suite History
1974:  Robert E. Kahn and
Vinton G. Cerf proposed the design
that formed the basis for the Internet Protocol (IP) and 
Transmission Control Protocol (TCP)

1978:  DoD declared TCP/IP a MIL STD for its data 
communications networks

Sept, 1981:  RFCs 790 (Assigned Numbers), 791 (IP), 792 
(ICMP), and 793 (TCP) edited by Jon Postel

1983:  DARPA mandated TCP/IP use

Required for connectivity to modern Internet

 
The architecture of TCP/IP is often called the Internet architecture because TCP/IP and the Internet are so 
closely interwoven. Internet standards were developed by the Defense Advanced Research Projects 
Agency (DARPA) and eventually passed on to the Internet Society.  

The Internet was originally proposed as a method of testing the viability of packet-switching networks.  
During its tenure with the project, DARPA foresaw a network of leased lines connected by switching 
nodes.  The network was called ARPANET, and the switching nodes were called Internet Message 
Processors, or IMPs.  The ARPANET was initially to be comprised of four IMPs located at the University 
of California at Los Angeles, the University of California at Santa Barbara, the Stanford Research 
Institute, and the University of Utah.  The original IMPs were to be Honeywell 316 minicomputers. 

Bolt, Beranek, and Newman (BBN), a company that had a strong influence on the development of the 
network in the following years, won the contract for the installation of the network.  The contract was 
awarded in late 1968, followed by testing and refinement over the next five years.  In 1971, ARPANET 
entered into regular service.  Machines used the ARPANET by connecting to an IMP using the "1822" 
protocol—so called because that was the number of the technical paper describing the system.  During the 
early years, the purpose and utility of the network was widely discussed, leading to refinements and 
modifications as users requested more functionality from the system. 

A commonly recognized need was the capability to transfer files from one machine to another, as well as 
the capability to support remote logins.  Remote logins would enable a user in Santa Barbara to connect to 
a machine in Los Angeles over the network and function as though he or she were in front of the UCLA 
machine.  The protocol then in use on the network wasn't capable of handling these new functionality 
requests, so new protocols were continually developed, refined, and tested. 

Remote login and remote file transfer were finally implemented in a protocol called the Network Control 
Program (NCP).  Later, electronic mail was added through File Transfer Protocol (FTP).  Together with 
NCP's remote logins and file transfer, this formed the basic services for ARPANET. 

By 1973, it was clear that NCP was unable to handle the growing volume of traffic and proposed new 
functionality.  A project was begun to develop a new protocol.  The TCP/IP and gateway architectures 
were first proposed in 1974.  The published article by Cerf and Kahn ("A Protocol for Packet Network 
Interconnection") described a system that provided a standardized application protocol that also used end-
to-end acknowledgments.  Neither of these concepts were really novel at the time, but more importantly 
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(and with considerable vision), Cerf and Kahn suggested that the new protocol be independent of the 
underlying network and computer hardware.  Also, they proposed universal connectivity throughout the 
network.  These two ideas were radical in a world of proprietary hardware and software, because they 
would enable any kind of platform to participate in the network.  The protocol was developed and became 
known as TCP/IP. 

A series of RFCs (Requests for Comment, part of the process for adopting new Internet Standards) was 
issued in 1981, standardizing TCP/IP version 4 for the ARPANET.  In 1982, TCP/IP replaced NCP as the 
dominant protocol of the growing network, which was now connecting machines across the continent.  It 
is estimated that a new computer was connected to ARPANET every 20 days during its first decade. (That 
might not seem like much compared to the current estimate of the Internet's size doubling every year, but 
in the early 1980s it was a phenomenal growth rate.) 

During the development of ARPANET, it became obvious that nonmilitary researchers could use the 
network to their advantage, enabling faster communication of ideas as well as faster physical data 
transfer.  A proposal to the National Science Foundation led to funding for the Computer Science 
Network in 1981, joining the military with educational and research institutes to refine the network.  This 
led to the splitting of the network into two different networks in 1984.  MILNET was dedicated to 
unclassified military traffic, whereas ARPANET was left for research and other nonmilitary purposes.  
ARPANET's growth and subsequent demise came with the approval for the Office of Advanced Scientific 
Computing to develop wide access to supercomputers.  The Department of Defense finally declared 
ARPANET obsolete in 1990, when it was officially dismantled. 

The Internet has grown far beyond its original scope.  The original networks and agencies that built the 
Internet no longer play a crucial role for the current Internet.  The Internet has evolved from a simple 
backbone network, through a three-tiered hierarchical structure, to a huge network of global networks.  
Through all of this incredible change one thing has remained constant: the Internet is built on the TCP/IP 
protocol suite. [ISOC 2001] 
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The OSI Reference Model contains seven layers that define the functions of data communications 
protocols.  Each layer of the OSI model represents a task performed when data is transferred between 
cooperating applications across a network.  Looking at this slide, you can see that the protocols are like a 
pile of building blocks stacked one upon another.  Because of this appearance, the structure is often called 
a stack or protocol stack.  A layer does not define a single protocol; it defines a data communications 
function that may be performed by any number of protocols.  Therefore, each layer may contain multiple 
protocols, each providing a service suitable to the function of that layer.  For example, the Hypertext 
Transfer Protocol and the Simple Network Management Protocol both provide user services and both are 
part of the Application Layer.  Every protocol communicates with its peer.  A peer is an implementation 
of the same protocol in the equivalent layer on a remote system (i.e., the local file transfer protocol is the 
peer of a remote file transfer protocol).  Peer level communications must be standardized for successful 
communications to take place.  In the abstract, each protocol is only concerned with communicating to its 
peer; it does not care about the layer above or below it. 

There must also be conformity on how to pass data between the layers on a single computer, because 
every layer is involved in sending data from a local application to an equivalent remote application.  The 
upper layers rely on the lower layers to transfer the data over the underlying network.  Data is passed 
down the stack from one layer to the next, until it is transmitted over the network by the Physical Layer 
protocols.  At the remote end, the data is passed up the stack to the receiving application.  The individual 
layers do not need to know how the layers above and below them function; they only need to know how 
to pass data to them.  Isolating network communications functions in different layers minimizes the 
impact of technological change on the entire protocol suite.  New applications can be added without 
changing the physical network, and new network hardware can be installed without rewriting the 
application software. 

Although the OSI model is useful, the TCP/IP protocols don't match its structure exactly.  Generally, 
TCP/IP is described using three to five functional layers.  The common DoD reference model, which is 
also known as the Internet reference model is shown in the slide. 

As in the OSI model, data is passed down the stack when it is being sent to the network, and up the stack 
when it is being received from the network.  The four-layered structure of TCP/IP is seen in the way data 
is handled as it passes down the protocol stack from the Application Layer to the underlying physical 
network.  Each layer in the stack adds control information to ensure proper delivery.  This control 
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information is called a header because it is placed in front of the data to be transmitted.  Each layer treats 
all of the information it receives from the layer above as data and places its own header in front of that 
information.  The addition of delivery information at every layer is called encapsulation. (Figure 1 
illustrates this.)  When data is received, the opposite happens. Each layer strips off its header before 
passing the data on to the layer above.  As information flows back up the stack, information received from 
a lower layer is interpreted as both a header and data.  [Cisco 1] 

Figure 1: TCP/IP Encapsulation 

 

An audiovisual web tutorial on TCP/IP is available at: 

http://www.rad.com/audio_presentations/tcp_ip/slide01.htm 

The cyber-instructor has a cool British accent too.  Check it out! 
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IP Characteristics

 
The Internet Protocol is the building block of the Internet. Its functions include: 

•  Defining the packet (or datagram), which is the basic unit of transmission in the Internet 

•  Defining the Internet addressing scheme 

•  Moving data between the Network Access Layer and the Transport Layer 

•  Routing packets to remote hosts 

•  Performing fragmentation and re-assembly of packets 

As stated in the slide, IP is a connectionless protocol.  This means that IP does not exchange any control 
information to establish an end-to-end connection before transmitting data.  In contrast, a connection-
oriented protocol exchanges control information with the remote system to verify that both systems are 
ready to transmit data before any data is sent.  This is sometimes referred to as a handshake.  When the 
handshaking is successful, the systems have established a connection.  Internet Protocol relies on 
protocols in other layers (transport or application) to establish the connection if they require connection-
oriented service. 

IP also relies on protocols in the other layers to provide error detection and error recovery.  The Internet 
Protocol is sometimes called an unreliable protocol because it contains only minimal error detection and 
recovery code—a rudimentary checksum is performed only on the IP Header.  This is not to say that the 
protocol is prone to errors and poor performance.  IP can be relied upon to accurately deliver data to the 
destination network, but it doesn't check whether that data was correctly received.  Protocols in other 
layers of the TCP/IP architecture provide this checking when it is required. [Kessler 2001] 
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IP Addressing
IP Addresses logically identify networks and hosts.

• 32-bits separated into four octets, represented in dotted decimal

• Subnet mask delineates network from host address

• Performing a “Logical And” of subnet mask and host IP address gives you the network 
address   (where 1+1=1 and anything else = 0)

Example:
Host IP: 128.9.160.27   = 10000000.00001001.10100000.00011011

Subnet mask: 255.255.255.0 = 11111111.11111111.11111111.00000000

Network address: 128.9.160.0     = 10000000.00001001.10100000.00000000

C:\ nslookup 128.9.160.27    =  www.rfc-editor.org

AND

Network classes: Class A: NNN.hhh.hhh.hhh NNN:      1 to 127
Class B: NNN.NNN.hhh.hhh NNN:  128 to 191
Class C: NNN.NNN.NNN.hhh NNN:  192 to 223Network.Host

 
An IP address consists of four octets (1 octet = 8 bits), or 32 bits.  The value in each octet ranges from 0 
to 255 decimal, or 00000000 - 11111111 binary.  Here's how binary octets convert to decimal:  

        1     1    1    1   1  1  1 1 

    128  64  32  16  8  4  2  1     (128+64+32+16+8+4+2+1=255) 

Now here's a sample octet conversion:  

    0  1  0 0 0 0 0 1 

    0 64 0 0 0 0 0 1    (0+64+0+0+0+0+0+1=65) 

And this is a sample address representation (4 octets):  

              10.           1.                 23.           19          (decimal) 

    00001010.00000001.00010111.00010011   (binary) 

These octets are broken down to provide an addressing scheme that can accommodate large and small 
networks.  There are five different classes of networks, A to E. Here, we'll only be addressing classes A to 
C, since classes D and E are reserved.  To determine the class of an address, look at the first octet of the 
dotted-decimal address.  

Class A: 1 - 126     (eg. 10.1.23.19)       

Class B: 128-191   (eg. 172.16.19.48) 
Class C: 192-223   (eg. 193.18.9.10)  

In a class A address, the first octet is the network portion, so the class A example above has a major 
network address of 10. Octets 2, 3, and 4 (the next 24 bits) are for the network manager to divide into 
subnets and hosts as she sees fit.  Class A addresses are used for networks that have more than 65,536 
hosts (actually, up to 16,581,375 hosts!).  In a class B address, the first two octets are the network portion, 
so the class B example above has a major network address of 172.16. Octets 3 and 4 (16 bits) are for local 
subnets and hosts.  Class B addresses are used for networks that have between 256 and 65,536 hosts.  
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In a class C address, the first three octets are the network portion.  The class C example above has a major 
network address of 193.18.9. Octet 4 (8 bits) is for local subnets and hosts - perfect for networks with less 
than 256 hosts.  

In order to use your addresses, you need to understand subnetting.  Subnetting allows you to create 
multiple logical networks that exist within a single Class A, B, or C network.  If you don't subnet, you 
will only be able to use one network from your Class A, B, or C network.  Unless you have been assigned 
many major networks, you really need to subnet.  

A subnet mask is defined for each IP address.  The subnet mask identifies which portion of the 4 octets is 
used to identify the network, with the remaining bits identifying the node.  If you want no subnetting, use 
these default masks (255 - strictly follow number, 0 - wildcard):  

Class A: 255.0.0.0 
Class B: 255.255.0.0 
Class C: 255.255.255.0  

Let's use these two addresses for some examples: 171.68.3.3 and 171.68.2.3.  If the subnet mask is 
255.255.255.0, the first 24 bits are masked, so a router compares the first 3 octets of the two addresses.  
Since the masked bits are not the same, the router knows that these addresses belong to different subnets.  

If the subnet mask is 255.255.0.0, the first 16 bits are masked, so a router compares the first 2 octets of 
the two addresses.  Since the masked bits are the same, the router knows that these addresses belong to 
the same subnet.  Nodes and routers use the mask to identify the network on which an address resides.  
For instance, imagine that Pittsburgh proper is a class B network, and think of the streets as subnets.  
Each street must have a unique name.  How would the postal service deliver a letter or find the correct 
destination if there were two Craig Streets?  Each house number can be thought of as a unique identifier 
for that street.  The house numbers themselves can be duplicated on other streets:  33 Market Street is not 
the same as 33 Craig Street.  

Pittsburgh.Craig.33   Pittsburgh.Market.33 
171.68. 3. 3   171.68. 2. 3 
  

You need to perform a logical "AND" operation to find out what subnet your node is in. Performing an 
"AND" operation means that anytime you "AND" a 0 value to another 0 or a 1 value, the result is 0. Only 
a 1 ANDed with another 1 value will result in a 1 value.  Here's how it works: 

0 AND 0 = 0,    0 AND 1 = 0,    1 AND 1 = 1 

 

Let's compare our sample addresses (171.68.3.3 and 171.68.2.3) against the subnet mask 255.255.240.0. 
We need to compare the binary representation of the third octet of the mask with the binary representation 
of the third octets of the addresses.  In order to do this, we'll perform a logical "AND" operation on the 
corresponding bits in each octet. 

The masked bits are those that are "turned on," or 1 in the mask.  Since the masked bits in both addresses 
are the same, the router knows that these addresses belong to the same subnet. 
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IP Packet Format
Run pointer over each box to reveal descriptions

Demo – Packet Capture

 

The basic IP packet header format is shown in the slide above. The format of the diagram is consistent 
with the RFC; bits are numbered from left-to-right, starting at 0.  Each row represents a single 32-bit 
word; note that an IP header will be at least 5 words (20 bytes) in length. The fields contained in the 
header, and their functions, are: 

Version: Specifies the IP version of the packet. The current version of IP is version 4, so this field will 
contain the binary value 0100. [NOTE: Actually, many IP version numbers have been assigned besides 4 
and 6; see the IANA's list of IP Version Numbers.] 

Internet Header Length (IHL): Indicates the length of the packet header in 32 bit (4 octet) words. A 
minimum-length header is five 32-bit words, so this field always has a value of at least 5 (0101)  Since 
the maximum value of this field is 15, the IP Header can be no longer than fifteen 32-bit words. 

Type of Service (TOS): Allows an originating host to request different classes of service for packets it 
transmits. Although not generally supported today in IPv4, the TOS field can be set by the originating 
host in response to service requests across the Transport Layer/Internet Layer service interface, and can 
specify a service priority (0-7) or can request that the route be optimized for either cost, delay, 
throughput, or reliability. 

Total Length: Indicates the length (in bytes, or octets) of the entire packet, including both header and 
data. Given the size of this field, the maximum size of an IP packet is 64 KB, or 65,535 bytes. In practice, 
packet sizes are limited to the maximum transmission unit (MTU). 

Identification: Used when a packet is fragmented into smaller pieces while traversing the Internet, this 
identifier is assigned by the transmitting host so that different fragments arriving at the destination can be 
associated with each other for reassembly. 

Flags: Also used for fragmentation and reassembly.  The first bit is called the More Fragments (MF) bit, 
and is used to indicate the last fragment of a packet so that the receiver knows that the packet can be 
reassembled.  The second bit is the Don't Fragment (DF) bit, which suppresses fragmentation. The third 
bit is unused (and always set to 0).  
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Fragment Offset: Indicates the position of this fragment in the original packet.  In the first packet of a 
fragment stream, the offset will be 0; in subsequent fragments, this field will indicates the offset in 
increments of 8 bytes.  

Time-to-Live (TTL): A value from 0 to 255, indicating the number of hops that this packet is allowed to 
take before discarded within the network.  Every router that sees this packet will decrement the TTL value 
by one; if it gets to 0, the packet will be discarded.  

Protocol: Indicates the higher layer protocol contents of the data carried in the packet; options include 
ICMP (1), TCP (6), UDP (17), or OSPF (89).  A complete list of IP protocol numbers can be found at the 
IANA's list of Protocol Numbers.  An implementation-specific list of supported protocols can be found in 
the protocol file, generally found in the /etc (Linux/Unix), c:\windows (Windows 9x, ME), or 
c:\winnt\system32\drivers\etc (Windows NT, 2000) directory.  

Header Checksum: Carries information to ensure that the received IP header is error-free. Remember 
that IP provides an unreliable service and, therefore, this field only checks the header rather than the 
entire packet.  The checksum field is the 16 bit one's complement of the one's complement sum of all 16 
bit words in the header.  For purposes of computing the checksum, the value of the checksum field is 
zero.  This means that the header is chunked into (a maximum of 12) 16 bit pieces.  These pieces are then 
summed using one’s complement math.  Finally, a one’s complement is calculated for this 16 bit value—
which is the actual 16 bit checksum.  

Source Address: IP address of the host sending the packet.  

Destination Address: IP address of the host intended to receive the packet.  

Options: A set of options which may be applied to any given packet, such as sender-specified source 
routing or security indication. The option list may use up to 40 bytes (10 words), and will be padded to a 
word boundary; IP options are taken from the IANA's list of IP Option Numbers. 
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IP Fragmentation and 
Reassembly
Fixed link-layer frame size for all networks
• Called the Maximum Transmission Unit (MTU)

Strategy
• Fragment only when necessary (when MTU < Packet size)

• Avoid fragmentation at source host—let routers manage it

• Delay reassembly until destination host

• Don’t try to recover from lost fragments—resend new packet

X.25 = 576 bytes, Ethernet = 1500 bytes,  FDDI = 4352 bytes

Demo – Packet Capture - Fragmented

 
Whenever the IP layer receives an IP packet to send, it determines which interface on the local router the 
packet is being sent out on and then queries that interface to obtain its MTU.  IP compares the MTU with 
the packet size and performs fragmentation, if necessary.  Fragmentation can take place either at the 
original sending host or at an intermediate router—although source hosts typically do this for testing or 
diagnostic purposes and generally not for operational communication. 

When an IP packet is fragmented, it is not reassembled (typically) until it reaches its final destination.  
The IP layer at the destination system performs the reassembly.  The goal is to make fragmentation and 
reassembly transparent to the transport layer (TCP and UDP), which it is, except for possible performance 
degradation.  It is also possible for the fragment of a packet to again be fragmented (possibly more than 
once).  The information maintained in the IP header for fragmentation and reassembly provides enough 
information to do this. 

Recalling the IP header, the following fields are used in fragmentation.  The identification field contains a 
unique value for each IP packet that the sender transmits.  This number is copied into each fragment of a 
particular packet.  The flags field uses one bit as the "more fragments" bit. This bit is turned on (is a 1) for 
each fragment comprising a packet except the final fragment.  The fragment offset field contains the 
offset of this fragment from the beginning of the original packet.  Thus providing a pointer as to the 
position the fragment resides in original packet.  Also, when a packet is fragmented the total length field 
of each fragment is changed to be the size of that fragment. 

Finally, one of the bits in the flags field is called the "don't fragment" bit.  If this is turned on, IP will not 
fragment the packet.  In this case, if a “don’t fragment” packet encounters a network that it cannot 
traverse (because of a smaller MTU) it will be discarded.  The router that discarded the packet will send 
an ICMP error message (fragmentation needed but don't fragment bit set) back to the originator.  When an 
IP packet is fragmented, each fragment becomes its own packet, with its own IP header, and is routed 
independently of any other packets.  This makes it possible for the fragments of a packet to arrive at the 
final destination out of order, but there is enough information in the IP header to allow the receiver to 
reassemble the fragments correctly. 

Although IP fragmentation looks transparent, there is one facet that makes it somewhat inefficient: if one 
fragment is lost the entire packet must be retransmitted.  To understand why this happens, realize that IP 
itself has no timeout and retransmission facility built in--that is the responsibility of higher layer 
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protocols.  TCP performs timeout and retransmission although UDP does not.  Some UDP applications 
perform timeout and retransmission for themselves.  When a fragment is lost that came from a TCP 
segment, TCP will time out and retransmit the entire TCP segment, which corresponds to a new IP 
packet.  There is no way to resend only one fragment of a packet.  Indeed, if the fragmentation was done 
by an intermediate router, (and not the originating host), there is no way for the originating host to know 
how the packet was fragmented. 
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When Host 1 talks to Host 8, fragmentation is required in order to traverse 
Network 3’s X.25 link

Network 1 (Ethernet)
MTU = 1500 bytes

Host 1 H2 H3

Router 1

H3

H4

H5

R2

R3

Network 2 (FDDI)
MTU = 4352 bytes

Network 4 (Ethernet)
MTU = 1500 bytes

Network 3 (X.25)
MTU = 576 bytes

Host 8 H7 H6

IP Fragmentation/Reassembly Example -1

 
The sample internetwork in this slide accurately depicts the need for IP Fragmentation.  X.25 networks 
are still very common throughout Europe and other parts of the world, therefore this type of 
fragmentation scenario is played out millions of times each day. 
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H1 R1 R2 R3 H8

ETH IP (1400) FDDI IP (1400) X.25 IP (556)

X.25 IP (288)

X.25 IP (556)

ETH IP (556)

ETH IP (288)

ETH IP (556)

Network 3Network 2Network 1 Network 4

IP Packet traverses Network 2 intact, but must be chopped into three 
fragments (by Router 2) that are < Network 3’s MTU of 576 bytes

IP Fragmentation/Reassembly Example -2

 
The packet from Host 1 reaches Router 1 which proceeds to strip off the Ethernet frame and encapsulate 
the IP packet within a FDDI frame for transport onto Network 2.  Router 2 then strips off the FDDI frame, 
reads the packet’s destination IP address (for Host 8) and determines that Network 3 is the correct (and in 
this case only) route.  Because the packet is larger than Network 3’s MTU, the packet is fragmented.  
Finally, Router 3 strips off the X.25 frames, consults its routing table, and then encapsulates the 
fragments within Ethernet frames for transport on Network 4.  Notice that Router 3 does not attempt to 
reassemble the fragments into the original packet—that is left up to the destination host. 
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• Offset field set to 0 for Frag 1 (indicates 1st Frag)
• Offset field set to 556 and 1112 for Frags 2 and 3 

which indicates relative position in original packet)
• IP Header occupies remaining 20 bytes in all Frags, 

which fills up the X.25 MTU of 576 bytes

• Each fragment has same ID as original packet
• More Fragments Flag set to 1 for Frags 1 and 2 but set to 0 (Last Fragment) for Frag 3

0 0

IP Fragmentation/Reassembly Example -3

 
Consider the following IP packet decode: 

 

We used the ping –l command, to send 
ICMP Echo packets that were larger 
than our MTU of 1500 bytes 
(Ethernet)—in this case 2000 bytes. 

As a result, our local host’s IP Stack 
was forced to Fragment the Echo 
packets in order to route them 
successfully to our destination host. 

Notice in the IP header that the MF 
(more fragments) flag is set to 1, 
indicating that Fragmentation has 
occurred.  All fragments will have the 
same Identification (17515), as well as 
the same Source and Destination 
address. 

The Fragment Offset field for the next 
fragment will indicate the position (in 
bytes) in the original packet. 
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IP Reassembly -1

 
This slide shows how fragments can take different routes to the destination.  Although the specification 
recommends that fragments be reassembled at the final destination, some firewalls and intrusion detection 
systems do either complete or virtual reassembly prior to forwarding them into the protected network.  
This technique can be difficult to implement because of routing changes and protocol requirements.  It 
also can potentially open DOS vulnerabilities on the firewall itself—covered later in this workbook.  
Many applications these days attempt to avoid fragmentation altogether by simply using the Do Not 
Fragment flag in the IP header.  With these applications, it is typical to initially disallow fragmentation 
and then adjust if ICMP Type 3 Code 4 Messages are received (Destination Unreachable--Fragmentation 
needed and DF flag set). 
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IP Reassembly -2
Fragments that match IP Header Identification, Source IP 
Address, Destination IP Address, and Protocol fields belong 
together and are reassembled.

Reassembled at destination machine, not at the intermediate 
routers—WHY?  Because packets may traverse different routes 
to destination.

 
In our example, Host 8 checks all three fragments to make sure the appropriate IP Header fields are 
identical (see first bullet of slide), and then reassembles the fragments into the original packet.  It uses the 
Fragment Offset field to put it together in the correct order. 
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IP Security Concerns
IP Address Spoofing

Fragmentation

• Firewall packet-filtering 
problems

• Denial of Service on hosts

• Intrusion detection problems

• Obfuscating other attack 
methods

Demo – IP Spoofing

 
IP Spoofing is a technique whereby intruders pretend to be sending data from an IP address other than 
their own.  The IP layer assumes that the source address on any IP packet it receives is the same IP 
address as the system that actually sent the packet -- it does no authentication.  Many higher level 
protocols and applications also make this assumption, so it seems that anyone able to forge the source 
address of an IP packet (called "spoofing" an address) could potentially get unauthorized privileges. 

However, there are two catches.  The first catch is that communication is likely to be one-way.  The 
remote host will send all replies to the spoofed source address -- not to the host actually doing the 
spoofing.  So, an attacker using IP spoofing is unlikely to see output from the remote system (unless they 
have some other method of eavesdropping on the network between the other two hosts).  The second 
catch is that an attacker needs to use the correct TCP sequence numbers if they plan on establishing a 
TCP connection with the attacked host (most common services, like Telnet, FTP, and r-commands use 
TCP).  The final ACK in a three-way handshake (see slide 27) must contain the other host's initial 
sequence number (ISN), otherwise the connection cannot complete; because the ISN in the SYN+ACK 
packet is sent to the real host, an attacker must get this ISN by some other method.  If the attacker could 
eavesdrop on the packets sent from the other host, he could see the ISN.  Similarly, if the attacker was 
unable to eavesdrop, but could somehow guess the other host's ISN, he can complete the connection and 
conduct a one way conversation (this may be sufficient to initiate some other form of two-way 
communication).  Unfortunately for the TCP/IP community, methods to overcome both challenges in IP 
Spoofing have been developed. 

Some attacks manipulate the fragmentation feature of IP.  Many firewalls including industry leader 
Checkpoint Firewall-1, actually reassemble (they call it virtual packet-reassembly) all fragmented 
datagrams so that the entire IP packet can be tested against its access rules before it is forwarded into the 
protected network.  As a result, if a firewall receives an IP fragment (IP Flag MF=1), it will hold this in 
its memory buffer (or queue), waiting for all remaining fragments.  Therefore, all a hacker need do is 
flood the firewall with IP fragments and before long it will bog down and no longer be able to pass 
legitimate packets.  Some firewalls, like IP Tables in Linux, have tuned this operation to survive some 
flooding.  This feature is enabled through the CONFIG _IP _ALWAYS _DEFRAG option in the Linux 
kernel, however it does impart a significant performance burden on the system and potentially the 
protected network depending on its available bandwidth.  Checkpoint has since provided a patch for the 
vulnerability described, but as is often the case, many operational systems are inadequately patched. 
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A different DOS attack utilizing IP fragmentation is the Teardrop attack.  This attack makes each 
fragment look like the original IP packet except that it contains an offset field that says, for instance, 
"This fragment is carrying bytes 600 through 800 of the original (non-fragmented) IP packet."  The 
Teardrop program creates a series of IP fragments with overlapping fragment offset fields.  When these 
fragments are reassembled at the destination host, some systems will crash, hang, or reboot. 

Because of the intricacies of IP fragmentation, many intrusion detection systems have difficulty 
identifying malicious packet streams.  Like firewalls, IDS need to inspect a complete (non-fragmented 
packet) so as to be accurate in comparing packets against their signature databases.  Fragmentation is used 
to hide or obfuscate malicious attacks and as a means of eluding access controls and detection. 

So as you can see, IP fragmentation can be rather challenging for security professionals.  Some 
administrators disallow fragmented packets into their networks completely—which may cause access and 
availability problems.  IP fragmentation has been termed a “hackers dream” and a security officer’s 
nightmare—the truth is probably somewhere in the middle for both. 



Student Workbook – Module 5: TCP/IP Security 

© 2002 Carnegie Mellon University Page 23

© 2002 Carnegie Mellon University Module 5:  TCP/IP SECURITY - slide 17

ARP
Used by a sending host when it  knows the IP address  
of the destination but needs the Ethernet address

ARP is a broadcast protocol - every host on the 
network receives the request

Each host checks the request against it’s IP address -
the right one responds

RFC 826—http://www.rfc-editor.org

 
Address Resolution Protocol (ARP) is a protocol for mapping an Internet Protocol address (IP address) to 
a physical machine address that is recognized in the local network.  For example, in IP Version 4, an 
address is 32 bits long.  In an Ethernet local area network, however, addresses (a.k.a. MAC addresses) for 
attached devices are 48 bits long.  A table, usually called the ARP cache, is used to maintain a correlation 
between each MAC address and its corresponding IP address.  ARP provides the protocol rules for 
making this correlation and providing address conversion in both directions.  There is also a Reverse ARP 
(RARP) for host machines that don't know their IP address.  RARP enables them to request their IP 
address from the router's ARP cache. 

How ARP Works: 

When an incoming packet destined for a host machine on a particular local area network arrives at a 
router, the router asks the ARP program to find a physical host or MAC address that matches the IP 
address.  The ARP program looks in the ARP cache and, if it finds the address, provides it so that the 
packet can be converted to the right packet length and formatted and sent to the machine. If no entry is 
found for the IP address, ARP broadcasts a request packet in a special format to all the machines on the 
LAN.  A machine that recognizes the IP address as its own replies.  ARP updates the ARP cache for 
future reference and then sends the packet to the MAC address that replied. 

Since protocol details differ for each type of local area network, there are separate ARP Requests for 
Comments (RFC) for Ethernet, ATM, Fiber Distributed-Data Interface, HIPPI, and other protocols. 
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ARP Demo – ARP/ARP Cache

 
In this example, Host Red sends a broadcast ARP request packet that is processed by every host on the 
local network.  Host Green sends an ARP reply packet directly back (unicast) to Host Red providing its 
Ethernet address.  All other hosts on the network simply drop Host Red’s original broadcast packet. 

ARP Packet Format: 

 

 

 

 

 

 

 

 

 

ARP Parameters (for Ethernet and Ipv4): 

 

Hardware Type  1 = Ethernet 2 = IEEE 802 LAN 

Protocol Type   2048 = IPv4 (0x0800) 

Hardware Length (HLEN) 6 = (octets) for Ethernet/IEEE 802 LAN 

Protocol Length (PLEN) 4 = (octets) for IPv4 

Operation:   1 = Request 2 = Reply 
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ARP Security
Concerns

Security assumptions of switching

• ARP Table Poisoning (CERT Vulnerability Note VU#399355)

- ARP tables are typically updated dynamically

- Subject to forged entries

• Overflowing ARP Table Memory (flooding)

- No entry = broadcast on switches

- Static entries = administrative burden

Man in the middle and session hijacking
- Loss of confidentiality and integrity of data

- Potential for Denial of Service (DOS)

 
The assumption is often made that switches increase security since unicast packets are only seen by the 
hosts they are destined for.  Under normal circumstances this may be true, but there are many cases in 
which this assumption is faulty.  The first instance is on startup or when the switch has not as yet learned 
the MAC address of a particular host.  In this case the packet is typically forwarded out to all interfaces 
on the switch (broadcast).  Until the destination host responds, the switch has not cached the system’s 
MAC address and therefore, doesn’t know which port to use to send the packet. 

The second instance is when the switch’s buffer memory becomes full--due to either too many hosts 
being attached to the switch (overloading its port density) or by being intentionally filled up as a result of 
forged ARP packets.  If the switch’s buffer is completely full, it can no longer write new entries into the 
ARP cache.  In this case, (as mentioned above) switches will typically send packets out every interface.  
Additionally, a timer is placed on all new entries to the ARP cache, when this timer expires; the entry is 
deleted from the ARP cache.  The next time this machine’s MAC address is resolved it will be done so 
through normal broadcast.  It is possible to statically map MAC addresses to physical interfaces within 
switches, however this can be an administrative burden. 

ARP spoofing is even easier (in most cases) than IP spoofing—especially on non-switched networks.  
Like IP, there is no authentication done by switches, routers, or end hosts.  Therefore, it becomes trivial to 
forge and transmit ARP packets, (for say the MAC address of the default gateway), thereby sending all 
non-local traffic through the attacker’s system.  This is commonly referred to as a man-in-the-middle.  
The intruder can also run a packet capturing program (like sniffer or TCPDump) and learn the IP to MAC 
correlations for all systems on the local network.  With this information, the intruder can spoof the MAC 
address of any local host, and then potentially receive all traffic intended for the victim.  This can result in 
a DOS for the spoofed host. 
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ICMP Functions
Is an error reporting and feedback mechanism for IP

Purpose is to provide feedback about problems in the 
communication environment, not to make IP reliable 

Uses basic support of IP as if it were a higher level protocol

2 kinds of messages:  Queries and error reports

Can provide flow control, but again not guaranteed—like IP it’s 
best effort only

RFC 792—http://www.rfc-editor.org
*Extended by RFCs 950, 1122, 1812, others

 
ICMP uses the basic support of IP as if it were a higher level protocol (like TCP or UDP), however, 
ICMP is actually an integral part of IP, and must be implemented by every IP module. 

ICMP messages are sent in several situations:  for example, when a packet cannot reach its destination, 
when a router does not have the buffering capacity to forward a packet, and when a router can direct the 
host to send traffic on a shorter route. 

As previously mentioned, the Internet Protocol is not designed to be absolutely reliable.  The purpose of 
these control messages is to provide feedback about problems in the communication environment, not to 
make IP reliable.  There are still no guarantees that a packet will be delivered or a control message will be 
returned.  Some packets may still be undelivered without any report of their loss.  The higher level 
protocols that use IP must implement their own reliability procedures if reliable communication is 
required. 

The ICMP messages typically report errors in the processing of packets.  To avoid the infinite regress of 
messages about messages etc., no ICMP messages are sent about ICMP messages.  Also ICMP messages 
are only sent about errors in handling the first fragment of fragmented packets. 

For more information, see:  http://www.networkcomputing.com/netdesign/1107icmp1.html 
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4 bit
Version

4 bit
Header
Length

8-bit type of service
 (TOS)=0

16-bit total length ( in bytes )

16-bit identification
3 bit

Flags 13-bit Fragment Offset

8-bit time to live
( TTL )

8-bit protocol=1
(ICMP)

16-bit header checksum

32-bit source IP address

Options ( if any )

32-bit destination IP address

Type Code Checksum

20
bytes

4 bytes

ICMP data (depending on the type of message)IP Data
Field

0 8 16 314

• ICMP messages are sent in IP packets. 
• The protocol field will always be 1 (indicates ICMP)
• The IP data field will contain the actual ICMP message

The ICMP Packet
Demo – ICMP Capture

 
 
ICMP messages are sent using the basic IP header.  The first octet of the data portion of the 
packet is an ICMP type field; the value of this field determines the format of the remaining data. 
 
 
Consider the following ICMP packet 
decode: 
 
Notice the following: 
 
The IP Protocol field = 1 for ICMP 
 
The ICMP Type field = 8 for Echo 
The ICMP Code = 0 (no code exists) 
 
The Sequence number is a unique 
identifier for each Echo and Echo 
Reply session.  In this case 50432 
corresponds to this echo request packet 
and will be indentical in the 
subsequent Echo Reply packet only. 
 
For data, the Ping program simply 
sends enough ASCII characters (a-w) 
to fill the standard packet size. 
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11 Original Message Types (from RFC 792)
• Now extended to more than 30 by other RFCs and 

experimental projects

• Common implementations
- Ping command utilizes ICMP Types 8 (Echo) and 0 (Echo 

Reply)

- When IP TTL expires, ICMP Type 11 packet is sent to source

ICMP Message Types

11 = Time Exceeded 
12 = Parameter Problem
13 = Timestamp 
14 = Timestamp Reply 
15 = Information Request 
16 = Information Reply

0 = Echo Reply 
3 = Destination Unreachable 
4 = Source Quench 
5 = Redirect 
8 = Echo

 
Common ICMP Message Types and their descriptions: 

ICMP Echo Reply (Ping):  The most frequently used ICMP message is popularly implemented in a 
program called ping. It provides feedback to the sender on the state of IP connectivity and is often used as 
a debugging tool.  Ping makes use of the ICMP ECHO REQUEST and ECHO REPLY parameters. 

ICMP Redirects:  The ICMP redirect message is sent by a gateway to the host, and instructs the host to 
use a different route when the router detects that its route is not as optimal as that of another router on the 
same network segment.  If the gateway detects a better route for the IP datagram, it will send the host a 
redirect message with the address of the preferred gateway.  TCP/IP will then send all traffic to this new 
IP address for another subnet. 

ICMP Source Quench:  IP provides a very basic form of flow control with the ICMP source quench 
message. The source quench message informs the originating host that the gateway or receiving host is 
being overrun and can’t keep up with the traffic.  The originating host then lowers the rate at which it 
sends datagrams to the receiving host, until it stops receiving "source quench" messages.  After some 
time, the originating host may then gradually increase the rate at which it sends out datagrams. 

ICMP Time Exceeded:  Time Exceeded error messages are used to indicate that a forwarding or 
reassembly operation took too long to complete and that the reporting device is discarding the data. In 
order to provide more-detailed reporting, the Time Exceeded message provides two different Codes:  

Time-to-Live Exceeded in Transit:  An IP Packet’s TTL has expired 

Fragment Reassembly Time Exceeded:  The IP’s timer for reassembling fragments expired 
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ICMP Code Field

Used in conjunction with and further describes TYPE field
Example:  Destination Unreachable Message

TYPE:  3      Code: 0 = net unreachable (sent by routers)

1 = host unreachable (sent by routers)

2 = protocol unreachable (sent by hosts)

3 = port unreachable (sent by hosts)

And 12 others for this Type alone!

Some message types have no corresponding code
Example:  Echo (8) and Echo Reply (1)

 

ICMP messages your computer can send or receive.  

ICMP Messages with general message type, specific message code, and 
whether the message is a query or a response to a network event (error 
report).  

Type Code Description Query/Error 

0 0 Echo reply Q 

3    Destination Unreachable:    

   0 Network Unreachable E 

   1 Host Unreachable E 

   2 Protocol Unreachable E 

   3 Port Unreachable E 

   4 Fragmentation needed and DF (flag) set E 

   5 Source Route Failed E 

   6 Destination Network Unknown E 

   7 Destination Host Unknown E 

   8 Source Host Isolated (obsolete) E 

   9 Destination Network Prohibited E 

   10 Destination Host Prohibited E 
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Type Code 
Description 

Query/Error 

   11 Network Unreachable for TOS E 

   12 Host Unreachable for TOS E 

   13 Prohibited by Filtering E 

   14 Host Precedence Violation E 

   15 Precedence Cutoff in Effect E 

4 0 Source Quench E 

5    Redirect:  

   0 Redirect for Network E 

   1 Redirect for Host E 

   2 Redirect for TOS and Network E 

   3 Redirect for TOS and Host E 

8 0 Echo Request Q 

9 0 Router Advertisement Q 

10 0 Router Solicitation Q 

11    Time Exceeded:  

   0 TTL Exceeds 0 During Transit E 

   1 TTL Exceeds 0 During Reassembly E 

12    Parameter Problem:  

   0 IP Header Bad E 

   1 Required Option Missing E 

13 0 Timestamp Request Q 

14 0 Timestamp Reply Q 

15 0 Information Request (obsolete) Q 

16 0 Information Request Reply (obsolete) Q 

17 0 Address Mask Request Q 

18 0 Address Mask Reply Q 
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ICMP Security Concerns
Information gathering/scanning
• Network mapping

• Operating system fingerprinting

Denial Of Service
• Forged ICMP packets

• Nuke (Ping of Death)

• Distributed flooding

Sort of  a 
“what keeps you up 
at night.”

 
ICMP is widely used for Information Gathering and Scanning.  It is commonplace to allow many 
different ICMP Type messages into and out of private networks.  One of the most common is simple 
Echo and Echo Reply as implemented by the Ping program.  There are multitudes of automated “ping 
sweep” type applications available on the Internet that map networks based on a specified range of IP 
addresses.  These scanning techniques can potentially reveal the range of IP addresses within internal 
networks, what access control lists are being applied on routers and firewalls, and what the MTUs are on 
internal networks. 

ICMP can also be used to determine which operating system is running—this is call OS Fingerprinting.  
One technique described by researcher Ofir Arkin1 shows that Microsoft Windows hosts can be 
fingerprinted by sending invalid code fields inside of ICMP Timestamp Request packets.  The manner in 
which the Windows systems respond to these requests are unique when compared to other operating 
systems.  Arkin describes other similar techniques for fingerprinting Linux, Solaris and several other 
Unix-based systems. 

ICMP packets do not include any authentication method for the recipient of the message.  A clever hacker 
can forge ICMP packets and cause havoc in an unprepared network. The two greatest threats from 
malicious ICMP packets are denial-of-service attacks and impersonation or man-in-the-middle attacks.  A 
forged destination-unreachable packet can isolate a computer from necessary services.  Echo Request has 
been used by hackers to crash computers with a naive implementation of the ICMP protocols.  Once a 
computer that performs an important service (such as a DNS server, file server, or web server) is out of 
the way, an ICMP redirect packet can point unwitting victims to the hacker's computer, where the hacker 
can accept authentication information (usernames, passwords, etc.). 

Denial of service attacks primarily use either the ICMP "Time exceeded" or "Destination unreachable" 
messages.  The "Time exceeded" message indicates that the Time-To-Live field in the IP header has 
expired; this can normally be caused by routing loops or trying to reach a host that is extremely distant.  
"Destination unreachable" messages can have several meanings (based on the ICMP Code field), but all 
basically indicate that packets cannot successfully be sent to the desired host.  Both of these ICMP 
messages can cause a host to immediately drop a connection (this is the desired result if the ICMP 

                                                 
1 http://www.sys-security.com/archive/papers/ICMP_Scanning_v3.0.pdf 
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message is legitimate).  An attacker can make use of this by simply forging one of these ICMP messages, 
and sending it to one or both of the communicating hosts.  Their connection will then be broken. 

As mentioned above, ICMP messages can be used to intercept packets.  The ICMP "Redirect" message is 
commonly used by routers when a host has mistakenly assumed the destination is not on the local 
network (and is thus attempting to send data allowed by the IP specification.  The oversize packet is then 
sent to an unsuspecting systemthe packet via the gateway to the intended destination).  If an attacker 
forges an ICMP "Redirect" message, it can cause another host to send packets for certain connections 
through the attacker's host. 

The Ping of Death (sometimes referred to as Nuke attacks) uses a ping system utility to create an IP 
packet that exceeds the maximum 65,536 bytes of.  This attack is obfuscated to a degree, because it 
requires that the packet be fragmented many times—remember the MTU for Ethernet is 1500 bytes.  The 
results are varied but many systems may crash, hang, or reboot when they receive such a maliciously 
crafted packet2.  

                                                 
2 http://www.insecure.org/sploits/ping-o-death.html 
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How can processes on different systems get the right messages?

Ports are numeric locators that enable messages to be de-
multiplexed to proper process (Service)

Connections are typically established using well-known ports  

• Well known ports 1 – 1023

• Registered ports 1024 – 49151

• Dynamic ports 49152 – 65535

Common well-known ports:
FTP = 20, 21 Telnet = 23 SMTP = 25

DNS = 53 TFTP = 69 HTTP = 80

POP3 = 110 BGP = 179 HTTPS = 443

Service Ports

http://www.iana.org/assignments/port-numbers

 
Higher-layer applications are referred to by a port identifier in TCP/UDP messages. The port identifier 
and IP address together form a socket, and the end-to-end communication between two hosts is uniquely 
identified on the Internet by the concatenating the source port, source address, destination port, 
destination address. 

A 16-bit binary number specifies individual Port numbers.  Port numbers in the range 0-1023 are called 
Well Known Ports.  These port numbers are assigned to the server side of an application and, on most 
systems, can only be used by processes with a high level of privilege (such as root or administrator). Port 
numbers in the range 1024-49151 are called Registered Ports, and these are numbers that have been 
publicly defined as a convenience for the Internet community to avoid vendor conflicts.  Server or client 
applications can use the port numbers in this range.  The remaining port numbers, in the range 49152-
65535, are called Dynamic and/or Private Ports and can be used freely by any client or server. 
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Some well-known port numbers include:  

Port # Common 
Protocol  

Service  Port # Common 
Protocol  

Service  

7  TCP  echo  80  TCP  http  

9  TCP  discard  110  TCP  pop3  

13  TCP  daytime  111  TCP  sunrpc  

19  TCP  chargen  119  TCP  nntp  

20  TCP  ftp-control 123  UDP  ntp  

21  TCP  ftp-data  137  UDP  netbios-ns  

23  TCP  telnet  138  UDP  netbios-dgm  
25  TCP  smtp  139  TCP  netbios-ssn  

37  UDP  time  143  TCP  imap  

43  TCP  whois  161  UDP  snmp  

53  TCP/UDP dns  162  UDP  snmp-trap  

67  UDP  bootps  179  TCP  bgp  

68  UDP  bootpc  443  TCP  https (http/ssl) 

69  UDP  tftp  520  UDP  rip  

70  TCP  gopher  1080  TCP  socks  

79  TCP  finger  33434  UDP  traceroute  

A complete list of port numbers that have been assigned can be found in IANA's list of 
Port Numbers: http://www.iana.org/assignments/port-numbers.  An implementation-
specific list of supported port numbers and services can be found in the services file, 
generally found in the /etc (Linux/Unix), c:\windows (Windows 9x, ME), or 
c:\winnt\system32\drivers\etc (Windows NT, 2000) directory. 
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TCP Characteristics

 
TCP is a connection-oriented, end-to-end reliable protocol.  TCP provides for reliable inter-process 
communication between pairs of processes in host computers attached to distinct but interconnected 
computer communication networks.  Very few assumptions are made as to the reliability of the 
communication protocols below the TCP layer.  TCP assumes an unreliable packet service from the lower 
level protocols—like IP which TCP utilizes.  In principle, TCP should be able to operate above a wide 
spectrum of communication systems ranging from hard-wired connections to packet-switched or circuit-
switched networks. The continuous data stream flowing down from various applications (requesting 
network communications) is broken up into chunks called segments. 

TCP is able to transfer a continuous stream of octets (bytes) in each direction between its users by 
packaging some number of octets into segments for transmission through the network.  In general, TCP 
decides when to block and forward data through a rather elegant strategy called sliding windows. 

TCP must recover from data that is damaged, lost, duplicated, or delivered out of order by IP.  TCP 
overcomes this by assigning a sequence number to each octet transmitted, and requiring a positive 
acknowledgment (ACK) from the other end.  If the ACK is not received within a timeout interval, the 
data is retransmitted.  On the receiver, the sequence numbers are used to correctly order segments that 
may be received out of order and to eliminate duplicates.  Damage is handled by adding a checksum to 
each segment transmitted, checking it at the receiver, and discarding damaged segments. 

TCP provides a means for the receiver to govern the amount of data sent by the sender (flow control).  It 
utilizes the sliding windows technique by returning a "window size" with every ACK indicating a range 
of acceptable sequence numbers beyond the last segment successfully received.  The window indicates an 
allowed number of octets that the sender may transmit before receiving further permission. 

To allow for many processes within a single Host to use TCP communication facilities simultaneously, 
TCP uses assigned port numbers.  This port is combined with the network address from IP to form a 
socket.  A pair of sockets uniquely identifies each connection.  That is, a socket may be simultaneously 
used in multiple connections.  The reliability and flow control mechanisms described above require that 
TCP initialize and maintain certain status information for each data stream.  The combination of this 
information, including sockets, sequence numbers, and window sizes, is called a connection.   

When two applications wish to communicate, their TCP's must first establish a connection (initialize the 
status information on each side).  When their communication is complete, the connection is terminated or 
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closed to free the resources for other uses.  Since connections must be established between unreliable 
hosts and over the unreliable internet protocol, a handshake mechanism with sequence numbers is used to 
avoid erroneous initialization of connections. 
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TCP Segment Format
Run pointer over each box to reveal descriptions

 
 

The TCP header fields: 

Source Port and Destination Port: Identify the source and destination ports to identify the end-to-end 
connection and higher-layer application. 

Sequence Number: Contains the sequence number of this segment's first data byte in the overall 
connection byte stream; since the sequence number refers to a byte count rather than a segment count, 
sequence numbers in contiguous TCP segments are not numbered sequentially. 

Acknowledgment Number: Used by the sender to acknowledge receipt of data; this field indicates the 
sequence number of the next byte expected from the receiver. 

Data Offset: Points to the first data byte in this segment; this field, then, indicates the segment header 
length. 

Control Flags: A set of flags that control certain aspects of the TCP virtual connection. The flags 
include: 

•  Urgent Pointer Field Significant (URG): When set, indicates that the current segment 
contains urgent (or high-priority) data and that the Urgent Pointer field value is valid. 

•  Acknowledgment Field Significant (ACK): When set, indicates that the value contained in 
the Acknowledgment Number field is valid. This bit is usually set, except during the first 
message during connection establishment. 

•  Push Function (PSH): Used when the transmitting application wants to force TCP to 
immediately transmit the data that is currently buffered without waiting for the buffer to fill; 
useful for transmitting small units of data. 

•  Reset Connection (RST): When set, immediately terminates the end-to-end TCP connection. 

•  Synchronize Sequence Numbers (SYN): Set in the initial segments used to establish a 
connection, indicating that the segments carry the initial sequence number. 

•  Finish (FIN): Set to request normal termination of the TCP connection in the direction this 
segment is traveling; completely closing the connection requires one FIN segment in each 
direction. 
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Window: Used for flow control, contains the value of the receive window size which is the number of 
transmitted bytes that the sender of this segment is willing to accept from the receiver. 

Checksum: Provides rudimentary bit error detection for the segment (including the header and data). 

Urgent Pointer: Urgent data is information that has been marked as high-priority by a higher layer 
application; this data, in turn, usually bypasses normal TCP buffering and is placed in a segment between 
the header and "normal" data. The Urgent Pointer, valid when the URG flag is set, indicates the position 
of the first octet of nonexpedited data in the segment. 

Options: Used at connection establishment to negotiate a variety of options; maximum segment size 
(MSS) is the most commonly used option and, if absent, defaults to an MSS of 536. Another option is 
Selective Acknowledgement (SACK), which allows out-of-sequence segments to be accepted by a 
receiver.  The IANA maintains a list of all TCP Option Numbers: http://www.iana.org/assignments/tcp-
parameters. 
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TCP “Three-Way Handshake”

Active participant (client)

Passive participant (server)

SYN, SequenceNum = x 

SYN + ACK, SequenceNum = y,
Acknowledgment = x + 1

ACK, Acknowledgment = y + 1

 
For a connection to be established or initialized, the two TCPs (each host) must synchronize on each 
other's initial sequence numbers.  This is done in an exchange of connection establishing segments 
carrying a flag bit called "SYN" (for synchronize) and the initial sequence numbers.  As shorthand, 
segments carrying the SYN bit are also called "SYNs".  Hence, the solution requires a suitable 
mechanism for picking an initial sequence number and a slightly involved handshake to exchange the 
ISN's. 

The synchronization requires each side to send its own initial sequence number and to receive a 
confirmation of it in acknowledgment from the other side.  Each side must also receive the other side's 
initial sequence number and send a confirming acknowledgment. 

    1) A --> B  SYN my sequence number is X 
    2) A <-- B  ACK your sequence number is X 
    3) A <-- B  SYN my sequence number is Y 
    4) A --> B  ACK your sequence number is Y 

The simplest three-way handshake is shown in figure 1 below.  The figures should be interpreted in the 
following way.  Each line is numbered for reference purposes.  Right arrows (-->) indicate departure of a 
TCP segment from TCP A to TCP B, or arrival of a segment at B from A.  Left arrows (<--), indicate the 
reverse.  Comments appear in parentheses.  TCP states represent the state AFTER the departure or arrival 
of the segment (whose contents are shown in the center of each line).  Segment contents are shown in 
abbreviated form, with sequence number, control flags, and ACK field.  Other fields such as window, 
addresses, lengths, and text have been left out in the interest of clarity. 
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      TCP A                                                TCP B 
 
  1.  CLOSED                                               LISTEN 
 
  2.  SYN-SENT    --> <SEQ=100><CTL=SYN>               --> SYN-RECEIVED 
 
  3.  ESTABLISHED <-- <SEQ=300><ACK=101><CTL=SYN,ACK>  <-- SYN-RECEIVED 
 
  4.  ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK>       --> ESTABLISHED 
 
  5.  ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK><DATA> --> ESTABLISHED 
 
          Basic 3-Way Handshake for Connection Synchronization 
 
                                Figure 1. 
 

In line 2 of figure 1, TCP A begins by sending a SYN segment indicating that it will use sequence 
numbers starting with sequence number 100.  In line 3, TCP B sends a SYN and acknowledges the SYN 
it received from TCP A.  Note that the acknowledgment field indicates TCP B is now expecting to hear 
sequence 101, acknowledging the SYN, which occupied sequence 100. 

At line 4, TCP A responds with an empty segment containing an ACK for TCP B's SYN; and in line 5, 
TCP A sends some data.  Note that the sequence number of the segment in line 5 is the same as in line 4 
because the ACK does not occupy sequence number space (if it did, we would wind up ACKing ACK's!) 
[RFC 793] 
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URG:  Urgent pointer field significant
ACK:  Acknowledgment field significant
PSH:   Push function
RST:   Reset the connection
SYN:  Synchronize sequence numbers
FIN:   No more data from sender

TCP Flags—Why so Important?

Central to defining “State” of connection

Key to packet filtering on firewalls

Frequently exploited…
• Therefore, if nothing else--know TCP flags and their 

functions well!

Demo – TCP Packet Capture

 
Understanding what TCP flags are and how they are implemented is important to securing your 
networked information.  As introduced on the previous slide, flags are used in part for identifying the 
current state of a TCP connection between 2 hosts.  Remember, TCP connections involve synchronizing 
the connection (SYN), transmitting the data, and then finishing, or closing the connection (FIN).  As 
requests are made between systems, acknowledgements (ACK) are transmitted back and forth to assure 
that both sides of the connection agree on the state of the connection. 

Most static, and particularly, dynamic packet filtering implementations (applying access rules to 
individual packets—which is usually done on firewalls) utilize TCP flags to enforce access control 
policies.  Because of this, it is important for administrators to understand how firewalls will filter packets 
based on which flags are set.  This information will be covered in greater detail later in the course during 
the Firewalls module. 

There exists, as part of the TCP specification, a level of interdependence between TCP Flags.  An 
example of this is when a client sends an initial SYN segment.  The client expects to receive a SYN/ACK 
segment back from the server and because it doesn’t want to have to wait forever for this, it starts a timer.  
This is both good and bad.  It’s good because the client will not wait indefinitely for the connection state 
to change, however this can be exploited—typically with flooding the server with connection requests 
(see SYN floods next slide).  There are other similar instances in the lifecycle of various TCP connection 
states that have no timer established.  This can be a problem because that particular state can remain 
waiting for transition indefinitely. 

As introduced above, TCP connections go through numerous state changes.  These states are listed and 
briefly described below and are illustrated in the inserted diagrams.  A complete explanation of each state 
is beyond the scope of this course, however it is highly recommended that security professionals 
understand this—refer to RFC 793. 

The following is excerpted from RFC 793:  A connection progresses through a series of states during its 
lifetime.  The states are:  LISTEN, SYN-SENT, SYN-RECEIVED, ESTABLISHED, FIN-WAIT-1, FIN-
WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT, and the fictional state CLOSED.  
Briefly the meanings of the states are: 
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LISTEN - represents waiting for a connection request from any remote TCP and port. 

SYN-SENT - represents waiting for a matching connection request after having sent a connection 
request. 

SYN-RECEIVED - represents waiting for a confirming connection request acknowledgment after having 
both received and sent a connection request. 

ESTABLISHED - represents an open connection, data received can be delivered to the user.  The normal 
state for the data transfer phase of the connection. 

FIN-WAIT-1 - represents waiting for a connection termination request from the remote TCP, or an 
acknowledgment of the connection termination request previously sent. 

FIN-WAIT-2 - represents waiting for a connection termination request from the remote TCP. 

CLOSE-WAIT - represents waiting for a connection termination request from the local user. 

CLOSING - represents waiting for a connection termination request acknowledgment from the remote 
TCP. 

LAST-ACK - represents waiting for an acknowledgment of the connection termination request 
previously sent to the remote TCP (which includes an acknowledgment of its connection termination 
request). 

TIME-WAIT - represents waiting for enough time to pass to be sure the remote TCP received the 
acknowledgment of its connection termination request. 

CLOSED - represents no connection state at all. 

 

 

   

      TCP Client Connection Lifecycle       TCP Server Connection Lifecycle 
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TCP Security Concerns
Port scanning

Denial of Service via SYN Floods, etc.

Sequence number prediction I’M THINKING 
OF A NUMBER 

BETWEEN 1 
AND 2. . . 

 
Port Scanning is one of the most popular reconnaissance techniques attackers use to discover services 
they can break into.  All machines connected to the Internet may be running services that listen at well-
known and not so well-known ports.  By port scanning the attacker finds which ports are available (i.e., 
being listened to by a service).   Essentially, a port scan consists of sending a message to each port, one at 
a time.  The kind of response received indicates whether the port is used and can therefore be probed 
further for weakness.  Two TCP scanning methods are described below: 

SYN scanning:  This technique is also called half-open scanning, because a TCP connection is not 
completed.  A SYN packet is sent (as if we are going to open a connection), and the target host responds 
with a SYN+ACK, this indicates the port is listening, and an RST indicates a non- listener.  The server 
process is never informed by the TCP layer because the connection did not complete—that is to say, the 
client didn’t send the final ACK to the server to complete the three-way handshake. 

FIN scanning:  The typical TCP scan attempts to open connections (at least part way).  Another 
technique sends erroneous packets at a port, expecting that open listening ports will send back different 
error messages than closed ports.   The scanner sends a FIN packet, which should close a connection that 
is open.   Closed ports reply to a FIN packet with a RST.  Open ports, on the other hand, ignore the packet 
in question. This is required TCP behavior.   If no service is listening at the target port, the operating 
system will generate an error message.  If a service is listening, the operating system will silently drop the 
incoming packet.  Therefore, silence indicates the presence of a service at the port. 

The same TCP behavior described in SYN scanning is exploited in another (very popular!) attack called 
SYN flooding.  The potential for abuse arises at the point where the server system has sent an 
acknowledgment (SYN-ACK) back to client but has not yet received the ACK message.  The server has 
built in its system memory a data structure (a buffer or queue) describing all pending connections.   

This data structure is of finite size, and it can be made to overflow by intentionally creating too many 
partially-open connections.  Creating half-open connections is easily accomplished with IP spoofing.  The 
attacking system sends SYN messages to the victim server system; these appear to be legitimate but in 
fact reference a client system that is unable to respond to the SYN-ACK messages.  This means that the 
final ACK message will never be sent to the victim server system.  The half-open connections data 
structure on the victim server system will eventually fill; then the system will be unable to accept any new 
incoming connections until the table is emptied out.  Normally there is a timeout associated with a 
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pending connection, so the half-open connections will eventually expire and the victim server system will 
recover. However, the attacking system can simply continue sending IP-spoofed packets requesting new 
connections faster than the victim system can expire the pending connections.  In most cases, the victim 
of such an attack will have difficulty in accepting any new incoming network connection.  In some cases, 
the system may exhaust memory, crash, or be rendered otherwise inoperative.  The location of the 
attacking system is obscured because the source addresses in the SYN packets are often implausible.  
When the packet arrives at the victim server system, there is virtually no way to determine its true source.  
Similar attacks are employed with the FIN flag set—which makes static packet filtering notably 
ineffective.  The latest abuses of this vulnerability are distributed flooding attacks—where many hacked 
systems act as the source of the flooding. 

TCP sequence number prediction is a well-known vulnerability that was first described in 1985.   

The TCP sequence number is a 32-bit counter.  In order to distinguish between different connections 
between the same sender and receiver, it is important that the sequence numbers do not start at 0 or any 
other fixed number each time a connection is opened.  Hence, it is important that the first byte of data 
from the sender to the receiver is using a random sequence number.  Many current implementations 
increment the sequence number by a finite amount every second. 

More precisely, RFC 793 specifies that the 32-bit counter be incremented by 1 in the low-order position 
about every 4 microseconds.  Instead, Berkeley-derived Unix kernels increment it by a constant every 
second, and by another constant for each new connection.  Thus, if you open a connection to a machine, 
you know to a very high degree of confidence what sequence number it will use for its next connection.  
And therein lies the attack [RFC 1948].  Many vendors have changed the algorithms employed in their 
TCP/IP implementations to defend against this, however recent research has called into question whether 
or not these mitigation strategies are effective.3  Studies have been done that analyze the susceptibility of 
specific operating systems to sequence number prediction.4  Another concern is how effectively faulty 
TCP/IP stacks are patched.  For Windows 95 and 98, Microsoft utilized the TCP/IP stack implementation 
directly from the open source code of BSD 4.4.  This code was patched by the original BSD developers, 
however, Microsoft had to develop their own patches for their stack—which may or may not have been a 
priority—because of the closed (proprietary) nature of the software. 

                                                 
3  http://www.kb.cert.org/vuls/id/498440 
 
4  http://razor.bindview.com/publish/papers/tcpseq.html 
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UDP Characteristics

 
UDP is one of the two main protocols to reside on top of IP.  It offers service to the user's network 
applications.  Example network applications that use UDP are:  Network File System (NFS) and Simple 
Network Management Protocol (SNMP).  The service is little more than an interface to IP. 

UDP is a connectionless packet delivery service that does not guarantee delivery.  UDP does not maintain 
an end-to-end connection with the remote UDP module; it merely pushes the packet out on the net and 
accepts incoming packets off the net.  UDP adds two values to what is provided by IP.  One is the 
multiplexing of information between applications based on port number.  The other is a checksum to 
check the integrity of the data and header information. 

The path of communication between an application and UDP is through UDP ports.  These ports are 
numbered, beginning with zero.  An application that is offering service (the server) waits for messages to 
come in on a specific port dedicated to that service.  The server waits patiently for any client to request 
service.  For instance, the TFTP server, always waits (listens) on port 69.  There can be only one TFTP 
service per computer (unless a TFTP server has been configured to use a non-standard port number) 
because there is only one UDP port number 69.  This port number is well known; it is a fixed number, an 
internet assigned number.  If a TFTP client wants service, it sends its request to UDP port number 69 on 
the destination computer. 

When an application sends data out through UDP it arrives at the far end as a single unit.  For example, if 
an application does 5 writes to the UDP port, the application at the far end will do 5 reads from the UDP 
port.  Also, the size of each write matches the size of each read.  UDP preserves the message boundary 
defined by the application.  It never joins two application messages together, or divides a single 
application message into parts. 

An incoming IP packet with an IP header type field indicating "UDP" is passed up to the UDP module by 
IP.  When the UDP module receives the UDP packet from IP it examines the UDP checksum.  If the 
checksum field value is zero (16 off bits), it means that checksum was not calculated by the sender and 
can be ignored.  UDP checksumming was designed to be optional for performance reasons.  If Ethernet, 
which has a robust error checking method, is the only underlying network between two communicating 
systems; then you may have UDP option out of performing checksums.  It is however, recommended that 
UDP checksum generation always be enabled because changes in routing tables can send packets over 
less reliable media access protocol implementations.  If UDP performs a checksum at both ends and the 
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packet contains no errors, the destination port number is examined and if an application is bound to that 
port, the message is queued for the application to read.  If the checksum is performed and errors are 
detected, the packet is discarded.  If no checksum is performed, than UDP simply queues the data (which 
may have errors in it) for the application.  Additionally, if the incoming UDP packets arrive faster than 
the application can read them, thereby overflowing the queue’s maximum value, UDP packets are 
discarded.  UDP will continue to discard packets until there is space in the queue. 
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UDP Packet Format

Destination PortSource Port

Application  data

0 16 31

ChecksumLength

Field Purpose
Source port 16-bit port number identifying originating application
Destination port 16-bit port number identifying destination application
Length Length of UDP datagram (UDP header + data)
Checksum Checksum of IP pseudo header, UDP header, and data

Demo – UDP Packet Capture

 
The fields of a UDP packet are: 

Source Port: Identifies the UDP port being used by the sender of the packet; use of this field is optional 
in UDP and may be set to 0.  

Destination Port: Identifies the port used by the packet receiver.  

Length: Indicates the total length of the UDP packet including data.  

Checksum: Provides rudimentary bit error detection for the packet (including the header and data) 
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UDP Security Concerns
Port Scanning

Packet Filtering can be a challenge

• Less granularity than with TCP

DoS via Simple UDP services

• Echo and Chargen in Smurfing

 
Port scanning usually means scanning for TCP ports, which are connection-oriented and therefore give 
good feedback to the attacker.  UDP responds in a different manner.  In order to find UDP ports, the 
attacker generally sends empty UDP datagrams.  If the port is listening, the service should send back an 
error message or ignore the incoming datagram.  If the port is closed, then most operating systems send 
back an "ICMP Port Unreachable" message.  Thus, you can find out if a port is NOT open, and by 
exclusion determine which ports are open.  Neither UDP packets, nor the ICMP errors are guaranteed to 
arrive, so UDP scanners of this sort must also implement retransmission of packets that appear to be lost 
(or you will get a bunch of false positives). Also, this scanning technique is slow because of 
compensation for machines that implement the suggestions of RFC 1812 and limit ICMP error message 
rate.  For example, the Linux kernel  limits destination unreachable message generation to 80 per 4 
seconds, with a 1/4 second penalty if that is exceeded. 

Some people think UDP scanning is pointless -- not so.   Consider the Solaris rpcbind hole (Sun 
Microsystems  Security Bulletin Bulletin Number: #00167, April 8, 1998).   Rpcbind can be found hiding 
on an undocumented UDP port somewhere above 32770.  So it doesn't matter that port 111 (SUN Remote 
Procedure Call) is blocked by the firewall.  But can you find which of the more than 30,000 high ports it 
is listening on?  With a UDP scanner you can!  There are other applications that operate similarly. 

Packet filtering UDP packets on firewalls is not as eloquent or complex as with TCP.  Because UDP is 
connectionless and therefore devoid of any “stateful” information, packet filters are forced to be very 
black and white with how they enforce access control policies.  Non-Stateful firewalls can basically deny 
or permit UDP traffic based on port number alone—that is the extent of granularity.  As a result, some 
attackers favor using UDP with either randomly generated dynamic port numbers, or static ports between 
49152 and 65535. 

Some UDP ports and their assigned services are particularly vulnerable to DOS attacks.  By sending a 
crafted UDP packet to a host that is listening on UDP port 19 (chargen) with a source port of UDP 7 
(echo) you’ll start a flood of network traffic that will grow exponentially.  Chargen or Character 
Generator is a testing service that generates and sends all ASCII characters to the requester.  UDP Echo 
(not to be confused with ICMP Echo) simply sends all of the data it receives back to the requester.  The 
number of connections increases as each service tries to complete its purpose—hence, the floodgates are 
opened to another form of DOS flooding. 
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Review Questions
1. What entity sponsored the development of TCP/IP?

2. Name one security issue involving IP fragmentation.

3. Name two security issues involving ARP.

4. What is the function of ICMP?

5. What is the main difference between UDP and TCP?

6. Which TCP flags are set during step two of the three-way 
handshake?

 
1. What entity sponsored the development of TCP/IP 

Answer:  DARPA 

2. Name 1 security issue involving IP fragmentation. 
Answer:  Can confuse firewalls and Intrusion Detection Systems 

3. Name 2 security issues involving ARP. 
Answer:  Man-in-the-Middle attacks, ARP Spoofing and Flooding 

4. What is the function of ICMP? 
Answer:  To report errors in the communications environment of IP and to provide a  means 
of performing network diagnostics and testing 

5. What is the main difference between UDP and TCP? 
Answer:  UDP is connectionless whereas TCP is connection-oriented 

6. Which TCP flags are set during step 2 of the Three-way Handshake? 
Answer:  SYN and ACK 
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Summary
TCP/IP history

TCP/IP architecture

IP

ARP

ICMP

Ports

TCP

UDP
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