7.2 Gigabit and 10-Gigabit Ethernet  
  7.2.7 Future of Ethernet  
Ethernet has gone through an evolution from Legacy → Fast → Gigabit → MultiGigabit technologies. While other LAN technologies are still in place (legacy installations), Ethernet dominates new LAN installations. So much so that some have referred to Ethernet as the LAN “dial tone”. Ethernet is now the standard for horizontal, vertical, and inter-building connections. Recently developing versions of Ethernet are blurring the distinction between LANs, MANs, and WANs.

While 1-Gigabit Ethernet is now widely available and 10-Gigabit products becoming more available, the IEEE and the 10-Gigabit Ethernet Alliance are working on 40, 100, or even 160 Gbps standards. The technologies that are adopted will depend on a number of factors, including the rate of maturation of the technologies and standards, the rate of adoption in the market, and cost.

Proposals for Ethernet arbitration schemes other than CSMA/CD have been made. The problem of collisions with physical bus topologies of 10BASE5 and 10BASE2 and 10BASE-T and 100BASE-TX hubs is no longer common. Using UTP and optical fiber with separate Tx and Rx paths, and the decreasing costs of switches make single shared media, half-duplex media connections much less important.

The future of networking media is three-fold:

  1. Copper (up to 1000 Mbps, perhaps more)
  2. Wireless (approaching 100 Mbps, perhaps more)
  3. Optical fiber (currently at 10,000 Mbps and soon to be more)

Copper and wireless media have certain physical and practical limitations on the highest frequency signals that can be transmitted. This is not a limiting factor for optical fiber in the foreseeable future. The bandwidth limitations on optical fiber are extremely large and are not yet being threatened. In fiber systems, it is the electronics technology (such as emitters and detectors) and fiber manufacturing processes that most limit the speed. Upcoming developments in Ethernet are likely to be heavily weighted towards Laser light sources and single-mode optical fiber.

When Ethernet was slower, half-duplex, subject to collisions and a “democratic” process for prioritization, was not considered to have the Quality of Service (QoS) capabilities required to handle certain types of traffic. This included such things as IP telephony and video multicast.

The full-duplex high-speed Ethernet technologies that now dominate the market are proving to be sufficient at supporting even QoS-intensive applications. This makes the potential applications of Ethernet even wider. Ironically end-to-end QoS capability helped drive a push for ATM to the desktop and to the WAN in the mid-1990s, but now it is Ethernet, not ATM that is approaching this goal.

 

Web Links

Strategic Directions: Introduction to 10 Gigabit Ethernet

http://www.cisco.com/en/US/tech/tk389/tk214/ technologies_white_ paper09186a0080092958.shtml