4.2 Signals and Noise  
  4.2.6 Other test parameters  
The combination of the effects of signal attenuation and impedance discontinuities on a communications link is called insertion loss. Insertion loss is measured in decibels at the far end of the cable. The TIA/EIA standard requires that a cable and its connectors pass an insertion loss test before the cable can be used as a communications link in a LAN. 

Crosstalk is measured in four separate tests. A cable tester measures NEXT by applying a test signal to one cable pair and measuring the amplitude of the crosstalk signals received by the other cable pairs. The NEXT value, expressed in decibels, is computed as the difference in amplitude between the test signal and the crosstalk signal measured at the same end of the cable. Remember, because the number of decibels that the tester displays is a negative number, the larger the number, the lower the NEXT on the wire pair. As previously mentioned, the PSNEXT test is actually a calculation based on combined NEXT effects.

The equal-level far-end crosstalk (ELFEXT) test measures FEXT. Pair-to-pair ELFEXT is expressed in dB as the difference between the measured FEXT and the insertion loss of the wire pair whose signal is disturbed by the FEXT. ELFEXT is an important measurement in Ethernet networks using 1000BASE-T technologies. Power sum equal-level far-end crosstalk (PSELFEXT) is the combined effect of ELFEXT from all wire pairs.

Return loss is a measure in decibels of reflections that are caused by the impedance discontinuities at all locations along the link. Recall that the main impact of return loss is not on loss of signal strength. The significant problem is that signal echoes caused by the reflections from the impedance discontinuities will strike the receiver at different intervals causing signal jitter.

 

Web Links

Cable Testing

http://www.cabletesting.com/CableTesting/ default.htm