3.2 Optical Media  
  3.2.9 Signals and noise in optical fibers  
Fiber-optic cable is not affected by the sources of external noise that cause problems on copper media because external light cannot enter the fiber except at the transmitter end. A buffer and an outer jacket that stops light from entering or leaving the cable cover the cladding.

Furthermore, the transmission of light on one fiber in a cable does not generate interference that disturbs transmission on any other fiber. This means that fiber does not have the problem with crosstalk that copper media does. In fact, the quality of fiber-optic links is so good that the recent standards for gigabit and ten gigabit Ethernet specify transmission distances that far exceed the traditional two-kilometer reach of the original Ethernet. Fiber-optic transmission allows the Ethernet protocol to be used on Metropolitan Area Networks (MANs) and Wide Area Networks (WANs).

Although fiber is the best of all the transmission media at carrying large amounts of data over long distances, fiber is not without problems. When light travels through fiber, some of the light energy is lost. The farther a light signal travels through a fiber, the more the signal loses strength. This attenuation of the signal is due to several factors involving the nature of fiber itself. The most important factor is scattering. The scattering of light in a fiber is caused by microscopic non-uniformity (distortions) in the fiber that reflects and scatters some of the light energy.

Absorption is another cause of light energy loss. When a light ray strikes some types of chemical impurities in a fiber, the impurities absorb part of the energy. This light energy is converted to a small amount of heat energy. Absorption makes the light signal a little dimmer.

Another factor that causes attenuation of the light signal is manufacturing irregularities or roughness in the core-to-cladding boundary. Power is lost from the light signal because of the less than perfect total internal reflection in that rough area of the fiber. Any microscopic imperfections in the thickness or symmetry of the fiber will cut down on total internal reflection and the cladding will absorb some light energy.

Dispersion of a light flash also limits transmission distances on a fiber. Dispersion is the technical term for the spreading of pulses of light as they travel down the fiber.

Graded index multimode fiber is designed to compensate for the different distances the various modes of light have to travel in the large diameter core. Single-mode fiber does not have the problem of multiple paths that the light signal can follow. However, chromatic dispersion is a characteristic of both multimode and single-mode fiber. When wavelengths of light travel at slightly different speeds through glass than do other wavelengths, chromatic dispersion is caused. That is why a prism separates the wavelengths of light. Ideally, an LED or Laser light source would emit light of just one frequency. Then chromatic dispersion would not be a problem.

Unfortunately, lasers, and especially LEDs generate a range of wavelengths so chromatic dispersion limits the distance that can be transmitted on a fiber. If a signal is transmitted too far, what started as a bright pulse of light energy will be spread out, separated, and dim when it reaches the receiver. The receiver will not be able to distinguish a one from a zero.