• Objectives
 • Explain how carbon’s electron configuration accounts for its ability to form large, complex, and diverse organic molecules.
 • Describe how carbon skeletons may vary, and explain how this variation contributes to the diversity and complexity of organic molecules.
 • Describe the basic structure of a hydrocarbon and explain why these molecules are hydrophobic.
 • Distinguish among the three types of isomers: structural, geometric, and enantiomer.

• Name the major functional groups found in organic molecules. Describe the basic structure of each functional group and outline the chemical properties of the organic molecules in which they occur.
• Carbon is unparalleled in its ability to form large, complex, and varied molecules — organic chemistry is the study of carbon compounds
 • organic compounds range from simple molecules to colossal ones
• Living organisms consist mostly of carbon-based compounds
 — proteins, DNA, carbohydrates, and other molecules that distinguish living matter are all composed of carbon compounds

— Carbon can bond to four other atoms or groups of atoms, making a large variety of molecules possible.

• The concept of vitalism is the idea that organic compounds arise only within living organisms
 — disproved when Friedrich Wohler accidently synthesized urea from ammonium cyanate in 1828
• Stanley Miller’s classic experiment demonstrated the abiotic synthesis of organic compounds
 – experiments support the idea that abiotic synthesis of organic compounds, perhaps near volcanoes, could have been a stage in the origin of life
The Formation of Bonds with Carbon

- Carbon can form four covalent bonds with other carbon atoms.
- Linked carbon atoms form the backbone of organic molecules:
 - in molecules with multiple carbons, each carbon bonded to four other atoms has a tetrahedral shape.
 - however, when two carbon atoms are joined by a double bond, the atoms joined to the carbons are in the same plane as the carbons.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Molecular Formula</th>
<th>Structural Formula</th>
<th>Ball-end-Stick Model</th>
<th>Space-Filling Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Methane</td>
<td>CH₄</td>
<td>H – C – H – H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) Ethane</td>
<td>C₂H₆</td>
<td>H – H – C – C – H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) Ethene (Ethylene)</td>
<td>C₂H₄</td>
<td>H – C = C – H</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The electron configuration of carbon gives it covalent compatibility with many different elements.
Molecular Diversity Arising from Carbon Skeleton Variation

- Carbon chains form the skeletons of most organic molecules
 - chains vary in length and shape
- Carbon backbone maybe linear, branched or circular
Isomers

- The versatility of carbon’s bond forming is the basis for isomers
 - molecules with the same molecular formula but different structures and properties
 - three types of isomers
 - structural
 - geometric
 - enantiomers

- important to pharmaceutical industry as molecules used as drugs often have enantiomers which have no or undesired effects
 - thalidomide
 - one enantiomer acts as sedative, other causes severe birth defects
 - L-dopamine and D-dopamine
 - one useful in treating Parkinson’s disease, other has no effect
Hydrocarbons

- Hydrocarbons are molecules consisting of only carbon and hydrogen
 - hydrocarbons are found in many of a cell’s organic molecules
The Functional Groups Most Important in the Chemistry of Life

- Functional groups covalently linked to the carbon backbone of hydrocarbons give the molecule distinctive chemical properties

- Seven functional groups are important in the chemistry of life:
 - hydroxyl (-OH): polar, dissolves in water
 - carbonyl (=CO): polar, dissolves in water
 - carboxyl (-COOH): hydrogen dissociates; weak acid
 - amino (-NH$_2$): accepts hydrogen; basic
 - sulfhydryl (-SH): can form disulfide bonds
 - phosphate (-PO$_4$): acidic and polar, dissolves in water
 - methyl (-CH$_3$): non-polar
Addition of different side groups to the same backbone significantly changes a molecule’s action.

- compare estradiol (female sex hormone) with testosterone (male sex hormone)
ATP: An Important Source of Energy for Cellular Processes

- An important organic phosphate is adenosine triphosphate (ATP)
 - ATP consists of an organic molecule called adenosine attached to a string of three phosphate groups
 - ATP stores the potential to react with water, a reaction that releases energy to be used by the cell